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Introduction

Algebraic geometry is a mixture of the ideas of two Mediterranean
cultures. It is the superposition of the Arab science of the lightning
calculation of the solutions of equations over the Greek art of position
and shape. This tapestry was originally woven on European soil and is
still being refined under the influence of international fashion. Algebraic
geometry studies the delicate balance between the geometrically plau-
sible and the algebraically possible. Whenever one side of this mathe-
matical teeter-totter outweighs the other, one immediately loses interest
and runs off in search of a more exciting amusement.



X Introduction

In this book we present from a modern point of view the basic theory
of algebraic varieties and their coherent cohomology. The local part
of the study includes dimension and smoothness. I have tried to keep
the commutative algebra down to minimum while putting the geometry
close to the algebra as part of the exposition.

The basic tools in algebraic geometry are sheaves and their cohomol-
ogy. This material is presented from the beginning. I have included the
basic discussion of curves to illustrate the theory.

To proceed further in algebraic geometry one needs to learn scheme
language. This transition should be easy for the reader of this book.
One needs only to drop the assumption that the structure sheaf consists
of functions. In writing this book I missed having generic points of
subvarieties and closed subschemes. But the main battle was to teach
the reader to think globally in sheaf-theoretic language.

There are many good presentations of more advanced material. I
personally recommend Mumford’s lectures on curves on a surface and
Grothendieck's Elements of Algebraic Geometry — or for theory of curves
and their Jacobians my Abelian Integrais.

I have enclosed an appendix on localization and direct limits of sets.
Furthermore, all rings are assumed to be commutative with identity.

I thank Mzx. S. T. Soh for many corrections.
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Algebraic varieties:
definition and existence -
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In this chapter we meet the category of algebraic varieties. We will
give their definitions and discuss the subsequent question of theilr exis-
tence. We begin the discussion with the larger category of spaces with
functions.

1.1 Spaces with functions

Let k be a fixed field. A space with functions is a topological space X
together with the assignment to each open subset U of X of a k-algebra
k[U] of k-valued functions on U, which we say consists of all regular
functions on U, satisfying the properties (¢) and (b) below.

The conditions are:

(a) Let U be the union | Uy of a family of open subsets. Let f be a
k-valued function on U. Then f is regular on U iff the restriction
flu, is regular on each U,.

(b) Let f be a regular function on an open subset U. Then D(f) =
{uz € U|f(x) # 0} is open and -}- is regular on D{f).

Thus (a) says that a function is regular iff it is locally regular. Also
we may add, subtract, multiply and divide regular functions whenever
it is reasonable and constant functions are regular.

A first example of a space with functions is:

Ezample. If k =R or € and X is any topological space, then X has a
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natural structure of a space with functions. Just take k[U] as the set of
all continuous functions: U — k.

In algebraic geometry k[U] is commonly denoted by Ox(U). In gen-
eral we shall denote a space with functions by the topological space X
with the rings of locally regular functions being understood.

A second example of a space with functions is an open subspace of a
space with functions. Let ¥ be an open subset of a space with functions
X. Give V the subspace topology. Then if U/ is an open subset of V
then a regular function on Uf for the structure of V is simply a regular
function on U for the structure on X; i.e., Ov(U) = Ox(U).

A morphism f: X — Y between two spaces with functions is a con-
tinuous mapping which pulls-back regular functions into regular func-
tions; i.e., if g(v) is a regular function on an open subset V' of ¥ then
F*(g)(w) = g(f(x)) is a regular function on the open subset f~!(V)
of X . Thus pulling-back by f defines a k-algebra homomorphism
f* < k[V] — k[f'V] for each open subset V of Y. An isomorphism
is a bijective mapping f such that both f and f~! are morphisms.

Erercise 1.1.1. In the first example show that any continuous mapping
X1 — X; is a morphism.

Erercise 1.1.2. Prove that the identity of a space with functions is a
morphism and the composition of morphisms is a morphism.

Ezxercise 1.1.3. Let U be an open subspace of a space with functions
X. Then show that the inclusion ¢ : I/ — X is a morphism and if ¥ is
another space with functions and ¢ : ¥ — U is a mapping, then ¢ is a
morphism if and only if 10 g:Y — X isomg.

Ezercise 1.1.4. Let f : X — Y be a mapping between spaces with
functions. Given open covers X = |JUy and ¥ = |V, such that
f(Uy) € Vg, f is a morphism if and only if each f, : Uy — V, is.

1.2 Varieties

We shall henceforth assume that the field k is algebraically closed.
Let X and Y be spaces with functions. The global effect of pull-back

defines a mapping
* : Morphism(X,Y) — k-Alg-Hom(k[Y], [X])
which sends a morphism f to f*.
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An affine variety Y is a space with functions such that  is bijective
for every X and k[Y] is a finitely generated k-algebra, An (algebraic)
variety X is a space with functions X which has a finite open covering
U1,...,U, where each U; is affine. A meorphism of varieties is just a
morphism of spaces with functions.

In this section we will give the first examples of varieties: the affine
line A’ and the projective line IP*,

As a set A! = {(z)} is just k. The closed subsets of A’ are the
whole A! and the finite subsets. This gives A! its topology. Let U
be an open subset of A'. If U is empty, k[U] = {0}. Otherwise if
U=A—{x,,...,2z,} then k[U] consists of the rational functions g(z)
in the coordinate z such that ¢ has no poles anywhere in U; i.e. g(z) =
H(_zp%;L)”‘T where p is a polynomial and the ; non-negative integers.
In particular k[A'] = k[X] is a polynomial ring in one variable. We
leave the details of checking that A is a space with functions as a very
instructive exercise. Here we will check that A? is affine.

Let Y be any space with functions. A mapping f : Y — A =k is
just a k-valued function.

Clazm. f is a morphism if and only if f is regular on Y.

Proof. “Only if” is obvious because the function f = f*(coordinate
function z). Conversely, we need to see that if f is regular then f is
a morphism; i.e., f}({z1,-..,2.}) is closed but f7}({z;y,...,z,}) is
the complement of the open subset D([[(f —z;)) of Y. To show that f

pulls-back regular functions, just note f*g = is regular off

(fly)—zi)™i
Ff7'({z1,...,2.}) where g is as before.

To finish we have *: Morphism(Y, A') =~ k[Y] = k-Alg-Hom (k[4Al],
k[Y]). This gives the proof that A? is affine. O

As a set IP! = kI {00} where oo is a symbol, The non-trivial closed
subsets of IP! are again finite. A regular function on P! — {z,,...,z,}
is a rational function of z which has no poles except at z4,...,z, where
g(z) has no pole at oo = g(-i) has no pole at ¥ = 0. To see that P! is a
variety it has an open covering (IP! — {oo}) U (IP! — {0}) by two affine
lines. Here A' ~ IP* — {00} sends z to z and A! ~ P! — {0} sends z to
1/z. An interesting feature of this example is:

Ezercise 1.2.1. k[IP'] = k.

Ezercise 1.2.2. Prove in detail that A is a space with functions.



4 Algebraic varieties: definition and existence

Ezercise 1.2.9. Why is IP! not affine?

Ezercise 1.2.4. Let X and Y be two affine varieties. Show that X is
isomorphic to Y iff the k-algebras k[X] and k[Y] are isomorphic.

1.3 The existence of affine varieties

If you did Exercise 1.2.2 you may have already noticed that it is not
completely trivial to check that a space with functions is affine. The
main work of this chapter is to explicitly construct all affine varieties.
The main result is

Theorem 1.3.1, If A is o finitely generated k-algebra with no nilpo-
tents, then there is o canonicelly consiructed affine variety Spec A with
o natural isomorphism

A = k[Spec A).

Recall that A has no nilpotents if a” = 0 for some n > 0 implies ¢ = 0
in A. Clearly a ring of k-valued functions has no nilpotents. Therefore
the hypothesis of the theorem is necessary for A to be k[affine variety].
So the theorem constructs all affine varieties up to isomorphism (see
Exercise 1.2.4).

In this section we will define Spec A as a space with functions together
with the homomorphism ¢ : A — k[Spec A]. The rest of this chapter is
devoted to the proof that

(*) Spec A is affine and
(**) ¢ is an isomorphism.

As a set Spec A = k-Alg-Hom (A, k). We have a natural k-algebra
homomorphism ¢ : A — {k-valued functions on Spec A}. Just let
$(a)(z) = z(a) where z is a point of Spec A.

Let I be a subset of A. Define zeroes(l) = {z € Spec Ali(z) = 0 for
all i € I}.

Claim. The subsets {zeroes(I)};c 4 are the closed subsets of a topology
of Spec A.

Proof.

(a) Spec A = zeroes({0}) and @ = zeroes({1}).
() zeroes(l; - I;) = zeroes(I;)| ) zeroes(Iz).
(¢) zeroes(|JI;) = [ zeroes(I;). Why?
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If U is an open subset of SpecA, a regular function on U is a k-valued
function f on U such that there is an open covering U = | JU; such that
each f|y, has the form -?;1(%'%—((3 where the denominator ¢(b;)(z) never
vanishes on U;. Clearly kU] is a k-algebra and condition () is easily

verified. For condition (#) note that D(f) = | J(Ui—~zeroes(a;) [ U;) is
open and 1/f (= %))—z) is regular on D(f). As ¢(a)(z) = id’ :) the
image of ¢ is contained in k[SpecA], that is ¢ : A — k[Spec A].

Ezercise 1.8.2. Check the above details.

Ezercise 1.9.8. Show that, for any ring A, the set of nilpotent elements
V0 = {a € Ala® = 0 for some n > 0} is an ideal. Also check that
A=+ A= {0}).

Frercise 1.9.4. Set-theoretically, what is Spec A when A is the polyno-
mial ring k[X:,...,X,]? Same if A = k[Xq,...,X0)/(fiy---s frr--ey)

for some polynomials f;.

Ezxercise 1.9.5. If Ais a finitely generated ring with no nilpotents, let ¢
be an element of A. Consider the homomorphism ¢ : A —+ A(g), where
A(q) is a finitely generated k-algebra with no nilpotents (Why?). Show
that ¢ induces an isomorphism Spec(A(,))>D(a) C Spec A where D(a)
is given the open subspace structure as a space with functions.

Ezercise 1.8.6. Show that the collection {ID{a)}.ca are a basis for the
topology of Spec A and D(a,) N D(az) = D{a; - az).

1.4 The nullstellensatz

The objective of this section is to prove Hilbert’s nullstellensatz which
says that Spec A has enough points so that

(%) ¢: A — k[Spec A]
is injective.

We will begin with a lemma of E. Noether whose proof will be pre-
sented in the second chapter. -

Lemma 1.4.1.  Let A be a non-zero finitely generated k-algebra. Then
we have an infection B C A where B is ¢ polynomial ring k[X,,...,X 4]
such that A is a B-module of finite type.
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Next we have

Lemma 1.4.2. [Let & C B C A be k-algebras such that A is o B-
module of finite type. Then composition gives a surjection

k-Alg-Hom(A, k) — k-Alg-Hom(B, k).

Proof. Let ¢ : B — k be a k-algebra homomorphism. Let m be the
kernel of 3. Consider the ideal mA in A. If mA #£ A, we can find a
maximal ideal n of A such that n O mA. Then A/n is a finite field
extension of B/m = k. Thus A/n = k as k is algebraically closed and
the quotient mapping A — & is an extension of .

It remains to show that mA = A is impossible. Let A = B"/R as
a B-module where R is a B-submodule of B" where r is finite. Let
€1, .., €p be the unit vectors in B". Thenfor 1 <i<r,ei € mB" + R,

le,e; = Zk:m_’;‘ek + r; where the r; are in R and the mf are in m. So if

(b%) = 1;~(m%) then r; = 3 bXey is in R. By Cramer’s rule det(b%)e; is
a linear combination of the r; with coefficients in B. Thus det(b¥)B" C
R and hence det(b}) - A = 0, or, what is the same, det(b%) = 0. On the
other hand det(b%) = 1((m)). As 1 # 0((m)) we have a contradiction.
O

With these lemmas the proof of the nullstellensatz is easy. Let a be a
non-zero element of A. Consider the localization A(,). This is non-zero
as 1/1=0/1 & a® = a".1 = a™0 = 0 for » > 0 and A has no nilpotents.
Furthermore A(g) is generated by A and 1/¢ hence is finitely generated.
Thus by Lemma 1.4.1 we have an inclusion k[X4,...,X,] C A().

We need to find a point z of Spec A such that ¢(a)(z) = z(a)
is non-zero where ¢ : A — k is a k-algebra homorphism. Let z :
k[X1,...,X,] — k be any k-algebra homomorphism. By Lemma 1.4.2
we may lift z to a k-algebra homomorphism y : A¢sy — k. Let z be the
composition A — A(,,)-ik. Then 1 = z(1) = y(a/a) = y(a/)y(1/a) =
z(a)y(1/a). Therefore z(a) # 0. This proves the nullstellensatz.

Remark., The argument with Cramer’s rule in the last part of Lemma
1.4.2 can be generalized to prove

Lemma 1.4.3. (Nakayama.) Let M be a finitely generated module over
a ring A. Assume that there is an ideal I of A such that M = 1. M.
Then there is an element @ of 1 + I such thet aM = {0}.

Ezercise 1.4.4. Prove Nakayama’s lemma.
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Henceforth we shall identify A with a ring of functions of Spec A.
Next we will give a reformulation of the nullstellensatz which resembles
Hilbert’s original statement.

Theorem 1.4.5. (Nullstellensatz.) If I is an ideal of A, {a € Ala(z) =
0 for all z in zeroes([)} = VT where VT = {a € Ala® € I for some
n > 0}.

Proof. One checks that +/T is an ideal. Then A’ = A/+/T is a finitely
generated ring which has no nilpotents. Let b be an element of A — V1.
Then ¥ = b+ +/T is a non-zero element of A’. By (+#);, for A’ we have

a homomorphism z’ : A" — k such that z'(b') #0. Let z : A — A
be the composition. Then by construction z is a point of zeroes(I) and
b(z) # 0. This proves the desired inclusion “C”. The reverse inclusion
is trivial because d*(z) =0& b(z)=0if » > 0. a

Some special cases will be useful.

Corollary 1.4.6, Given a subset J of A then zeroes () =8 & 1=
3 apjr where ap € A and jx € J.

finite

Proof. Apply Theorem 1.4.5 to theideal I = JA. Henceif zeroes(J) = @,
then zeroes(I) = @ and we have A = /T; i.e., 1 = 1* € JA which is the
second statement. The converse is obvious. O

Corollary 1.4.7. Let f; be elements of A and n; be positive integers,

Spec(4) = UD(f,) & l= Z aif .

finite

Proof. The complement of the open subset | | D(fi) is zeroes{(f]**)}.
Thus this corollary follows from the last. O

This result has an interesting topological consequence.
Corollary 1.4.8. A variety is guasi-compact.
Proof. As a variety is a finite union of open affines, it suffices to prove

this for the affine variety Spec A. Now the D(f;) are a basis for the
topology of Spec A. If Spec A = | JD(f;) is an open cover by this then
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1= ) aifi for f;in a finite set I of indexes. Then Spec A = | J,.; D(f:)
is a finite subcover. Qg

Ezercise 1.4.9. Prove that a point of a variety is a closed subset. (Hint:
reduce to the affine case.)

1.5. The rest of the proof of existence
of affine varieties / subvarieties

We will first show
(*%)2 The subring A C k[Spec A] is all of k[Spec A].

Let f(z) be a function in k[Spec A]. We need to see that f isin A. By
definition we have an open cover Spec A = | JU, by open subsets such
that f(u) = i—:(&% when u in U, where g, and A, are in A and Aq(u)
is never zero on U,. We may assume that Uy = D(kq) for some ko in
A. Doing the replacement f(u) = ((,CL:%)){%); on D(ky « ho) = D(kq), we
may assume that A, = &,.

Next consider the function A2 f. This equals h,ga on D(hs) and
both functions are zero on the complement. Therefore AZf = h,gqs
is in A. By Corollary 1.4.7, 1 = Y a,A% for some a, in A. Thus
f=7F1=3aa(fh?)isin A, which is what we wanted.

It remains to prove (*).

Let X be a space with functions. Then * defines a bijection
Morphism(X,Spec A) — k-Alg-Hom(A, k[X]). Let é, be evaluation of
a function at a point z. Let f: X — SpecA be a morphism. Let a be
an element of A and z be a point of X. Then a(f(z)) = (f*a)(z), or,
rather, ¢,y is the composition ALk[X]é—ﬁk. As the point f(z) is the
same as the homomorphism &), this shows that f is determined by
f*. Thus « is injective. Conversely let ¢ : A — k[X] be a k-algebra
homomeorphism. Define f = r(¢) by the formula é¢(;y = 6, o ¢. Using
properties (a) and (b) of a space with functions, you do

Ezercise 1.5.1, f is a morphism.

Clearly r is an inverse to . Thus () is true and we have constructed
all affine varieties up to isomorphism.

Ezercise 1.5.2. Show that the category of affine varieties with mor-
phisms is contravariantly equivalent to the category of finitely generated
k-algebras with no nilpotents with k-algebra homomorphisms.
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In general let X be a subset of a space with functions ¥'. Then X
has an induced structure of a space with functions. Explicitly give X
the subspace topology. A regular function f on an open set U of X is
a function of the following form; there is an open cover U = | (X NV,)
where the V, are open subsets of ¥ such that f(y) = go(y) on X NV,
where g, is regular on V.

Ezercise 1.5.9. Check that X is a space with functions and the inclusion
X <Y is a morphism.

With this notation we have

Theorem 1.5.4. A locally closed subspace of a variefy is ¢ variely
called a subvariety. A closed subspace of an affine variety is affine and
in this case a reqular function on the subspace lifts to a reqular function
on the ambient variety.

Proof. Let X be a locally closed subset of a variety Y. Then X is a
closed subset of an open subset Z of Y. Clearly the space with function
structures on X induced by Z and Y are the same. Thus we need to
know the two cases X openin Y and X closedin Y.

Let ¥ = | JY; where the Y; are a finite number of open affines. Then
X = (X nY3) is a finite open cover of X. As the statements are local
on Y we may assume that Y is affine.

Then we want to prove

() if X is closed then X is affine,
(b) if X is open then X has a finite covering by open affines.

Now let Y = Spec A where A is a finitely generated k-algebra with no
nilpotents. Assume that X is closed. Let I be the ideal of functions in
A vanishing identically on X. Clearly set-theoretically X = Spec(A/I).
One simply checks directly from the definitions that

Ezercise 1.5.5. Spec(A/I) has the induced structure as a space with
functions. Therefore X is affine if it is closed in an affine.

Assume that X is open. Then X = |JD(e;) where the a; are in A.
Then the D(a;) are the affines Spec(A(,;)) by Exercise 1.3.5. To see that
there are only finitely many necessary D{a;) we use

Lemma 1.5.6. Any open subset of a variety is guasi-compact.

This will be proved in the second chapter,
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Ezercise 1.5.7. Let X be a subspace of a space with functions Y. For
any space with functions Z a mapping Z — X is a morphism if the
composition £ -+ X — Y is a morphism.

1.6 A" and P"

By definition A™ = Spec(k[X1,...,X,]). Asa k-algebra homomorphism
k[Xy,...,Xy]) — k is determined by the images z1,...,z, of X3,...,X,
in k& which can be arbitrary, A" = {(z1,...,Z,) € k"} set-theoretically.
As a variety A" is called an affine n-space.

Furthermore if X is a space with functions and f : X —+ A" isa
mapping given by f(z) = (fi(z),..., fo(z)) then f is a morphism if and
only if each f;(z) is a regular function on X.

Another fact is that any affine variety X is isomorphic (non-canoni-
cally) to a closed subvariety of A" corresponding to a surjection
k[X1,...,X,) — A where A = k[X]. A subvariety of A" (or any other
affine variety) is called guasi-affine.

For instance the punctured affine space A™ — {0].

Lemma 1.6.1.

(e) K[A! —{0}]) = K[X1, X').
() Frn>1, k[A" — {0}] = k[X1,..., Xn].

Proof. If n = 1, A! — {0} is the open subvariety D(X;) of Al. So
A! — {0} is the affine Spec(k[X]cx) = k[X,X 1]). Thus k[X,X 1] =
kA — {0}).
Ifn>2 A"— {0} =D(X;)U...UD(X,) and
E[D(X:) = k[X1,..., Xn, X7
Thus £[A” — {0}] = (Yk[X1,- -+, Xn, X[ 1] = kX1, ..., Xa). O
§

Ezercise 1.6.2. Prove that the quasi-affine variety A% — {0} is not affine.

Set-theoretically P" is the quotient set
(A~ {0}/ = {(z0y. .., Z0) FO
modulo (o, ..,z,) ~ (Azg,..., Azy) for any X in k— {0}}. We want to
define P" as a quotient space with functions. Let 7 : A®*! — {0} — P"
send a vector to all vectors with the same direction. A subset U of IP"
is open iff 71U is open. A function f on U is regular iff 7*f is regular
on 77U, We claim that with this definition of a space with functions
P" is a variety. Let 0 <7 < n. Let E; = {(z¢,...,%,) in P* | z; # 0}.
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Claim. The E; form an open covering of " by open affine subvarieties.
In fact E; = Spec[k[Xo/Xi,..., X/ Xy - .., Xn /X))

Proof. It suffices to see the second fact. Let D; = D(X;) in A"+, Then
7™ 1E; = D;. So E; is open and k[E;) = {f € k[Xy,...,Xa, X[ "] such
that f(Az) = f(z) for all A # 0}. So these f’s are homogeneous because
k is infinite and hence have the form
f S k[Xo/X,',. - X.'/X,‘, . ,X,,/X.'].

Thus B; = k[Xo/Xi,...,Xn/Xi] = k[E;] and we have a canonical mor-
phism [ : E; — Spec B; which is clearly bijective. We need to check
that the inverse of I is a morphism.

Let 1 : k[Xo,...,Xn,X'] = B; be the homomorphism sending X;
to X;/X; if j # ¢ and both X; and X! to 1. Then this induces a
morphism Spec B; — D;. The composition Spec B; — D;5E; is a
morphism which is easily seen to be the inverse of I. Therefore each E;
is affine. Therefore P" is a variety called projective n-space.

A closed subvariety of a projective space is called projective. An arbi-
trary subvariety of a projective space is called guasi-projective. We may
compute the global regular functions on PP*, They are just constants,

Lemma 1.6.3. k[IP"] = k.

Proof. f n =0, IP° is a point and the result is clear. Assume that n > 1.
Then 7* : kfIP"] — k[A"T? — {0}] is injective. By Lemma 1.6.1 the last
rng is k[Xo,...,Xn+1) and k[P?] is identified with the homogeneous
polynomials of degree zero; i.e. constants. (I

Ezercise 1.6.4. Let f: IP* — X be a morphism where X is a quasi-affine
variety. Prove that the image of f is a single point.

Ezercise 1.6.5. Let X be a subset of P*. Then X is closed if and only
if it has the form {(Xo,...,Xs) € P* | fi( Xy,...,X,) = 0 for some set
of homogeneous polynomials f;}.

1.7 Determinantal varteties

Let X be a variety. Consider a matrix o = (&}) where the coefficients
a} are regular functions on X. For each point z of X we can think of
a(z) = (aj(z)) as the matrix of a linear transformation &(z) : V —
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W between two fixed vector spaces. By assumption the matrix o(z)
depends regularly on z.

Let r be an integer. Consider the subset D,(a) = {z € X|ranka(z)
< r} of X, where rank denotes the rank of a matrix.

Lemma 1.7.1. D,(a) is a closed subvariety of X.

Proof. We need to explicitly give equations for D,(«). Let I.(a) be the
set of all determinants of all (r + 1) X (r + 1) submatrices of a. Then
I(a) consists of regular functions on X and z € D,.(a) & f(z) =0 for
all f in I.(«). This shows that D.(e) is closed. a

If @ = (f1,...,fs) Is just a 1 X s matrix, Dyp(a) = {fi(z) = ... =
fs(z) = 0}.

QOne way to restate the lemma is

Corollary 1.7.2. The funetion rank(a(z)) on X is lower-semicontin-
uous.



2

The preparation lemma,
and some consequences

2.1 The lemma

Let f be a non-constant polynomial in variables X,,...,X,,.

Lemma 2.1.1. After making a linear change of variables of the form
X1 g X] +)\1X,,,...,X,,_1 —* Xn—l +Aﬂ_1Xﬂ, and Xn g AﬂXﬂ,An -',é
0, where the A; are constants, we rnay assume that f is monic in X, i.e.

f has the form X¢ 4+ 3 £:XE where d > 0 and the f; are polynomials
0<i<d
in the n — 1 variables X;,...,Xn1.

Proof. Let d be the total degree of f in all its variables. Write f = fa+g¢
where fy is homogeneous of degree d and the total degree of g is < d.
Consider f' = f(X; + M Xn,--, Xne1 + Ap—1Xy, AnX,) for variables
Xi. We have f' = (terms in X, of degree < d) +fa(d1,---, An)XE. Thus
we want to choose \y,...,An such that fs(Ay,...,A,) = 1 where we
know that f3 is a non-zero homogeneous polynomial. By homogeneity
it is enough to find py, ..., g, such that @ = fa(uy, ..., p.) # 0 because
it may take A = (1)1/¢. .

Thus we want to show that a non-zero polynomial ¢ in Xy,...,X,
defines a non-zero function on A" (which is a special case of the null-
stellensatz which has not been proven yet). The proof is by induction
on n. If n = 1, the number of zeroes of ¢g(X,) is finite but % is infinite.
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Thus this case is clear, If n > 1, write ¢ = 3. ¢;X! where the g;
0<i<d

are polynomials in X3,...,Xn~: and g¢ # 0. By induction we can find
Biy---sHnet such that gd(nuls .- 's!-"'ﬂ'-l) '7"- 0. Thus g(}u’ls -- -af-‘n—laXn)
is a non-zero polynomial in X,. By the case n = 1 we may find g, such

that g(p1,...,pn) # 0. O

Next we will give the proof of Lemma 1.4.1; i.e. If A is a non-zero
finitely generated k-algebra then we have an injection B C A such that
B 1s a polynomial ring and A is a B-module of finite type.

Proof. Let k[X,...,X,] — A be a surjective k-algebra homomorphism
with kernel I. If I = 0 then take B = A. Otherwise let { be a non-zero
element of I. By assumption ¢ is not constant. By Lemma 2.1.1, we may
assume that ¢ is monic of degree d > 0 in X, after changing coordinates.
Let A’ = image of k[X;,...,Xn—) in A.

Claim. A is an A’-module of finite type,

Note that we have a surjection k[X,,...,X;]/(i) — A and the first
ring is a free k[X1,...,Xn-1)-module with basis 1,...,X ¢! modulo(t)
by long division. The claim follows immediately.

As A’ has fewer generators than A, by induction on n (the case n =0
is trivial) we may find a polynomial ring B C A’ such that A’ is a B-
module of finite type. Hence by the claim A is a B-module of finite
type. O

We will need to know a special case of this argument.

Lemma 2.1.2. Let i be a non-constant regular function on A", We
may find a morphism m : {i = 0} — A"~! which is surjective such that,
via 7, k[{¢ = 0}] & a k[A""?]-module of finite type.

Proof. As above B = k[X,,...,X,]/({) is a finite k[A"~!]-module where
X1,...,Xn- are the coordinate functions on A", Thus k[{¢ = 0}] =
B/+/0is a finite type module over k[A"1]. Now if A = k[A™~!] we have
the inclusion A C B, then {i = 0} = Spec B/0 = k-Hom(B//0, k) =
k-Alg-Hom(B, k) — k-Alg-Hom(A, k) = A" is surjective by Lemma
1.4.2. O

Thus we have finished the proof of the nullstellensatz.
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2.2 The Hilbert basis theorem

A ring A is noetherian if any ideal of A is finitely generated. This
condition is easily seen to be equivalent to the following by an induction
on the number of generators; any submodule of a finitely generated A-
module M is finitely generated.

Ezercise 2.2.1. Prove this equivalence,

Hilbert’s basis theorem is
Theorem 2.2.2 A finifely generated k-clgebra A i3 noetherian,

Proof. Let 1 : k[X,,...,X;] — A be a surjection. Let I be an ideal
of A. To show that I is finitely generated it suffices to show the same
for the ideal I' = %™([) in the polynomial ring. If I' = 0 there is
no problem. Otherwise there exists a non-zero polynomial f in I'. By
Lemma 2.1.1 we may assume that f is monic in X.

By induction we may assume that k[X),...,Xn-1] = B is known
to be noetherian. Consider I'/(f) C k[X1,...,X5])/(f). This is a B-
submodule of a B-module which is finitely generated. Then I'/(f) =
(@B + -.. +§,B) where g,,...,9, are elements of I'. Clearly I =
(f+91,---,9r) and we are finished. O

We may now verify Lemma 1.5.6. By the previous reasoning we need
to show that an open subset U of an affine variety SpecA is quasi-
compact. Let U = |JD(f;) for f; in A. Then the complement of U
is zeroes({fi)ier) = zeroes((fi,,---,fi,)) for some finite number r by
Theorem 2.2.2. Thus U = D(f;,)U...U D(f;,) is a finite subcovering.
This is what we want to show.

A topological space such that every open subset is quasi-compact is
called noetherian. As a variety is the finite union of open affines,
Theorem 2.2.3. Any variety has ¢ noctherian fopology.

There is a chain condition that characterizes noetherian space.
Lemma 2.2.4 Let X be a topological space. Then X is noetherian
if and only if any descending chain X; D X; 2 ... of closed subsets

becomes stationary eventually: X, = X,y = ... for somer.

Proof. Assume that X is noetherian and we have such a chain. The
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open subset U = X - [ X; is quasi-compact. Now U has the chain

XinlU 2 ... of CIOSed'subsets which has empty intersection. Thus
X.NU = for some r. This means X, C (X, and thus X, = X,4y....

Conversely f Uy DU, Dis a descendil'lg chain of closed subsets of
U such that (U; = @, consider X; = closure of U; in X. Then X, =

1
Xepy=...forsomer. AsU; =X;NU wehave U, =Uppy; =... = @
Thus U is quasi-compact. O

In the next section we will see that noetherian spaces have special-
properties.

2.3 Irreducible components

A topological space X is irreducible if whenever X = X; UX, where X,
and X, are closed subspaces then X = X, or X,. An irreducible topo-
logical space is necessarily connected but not conversely as the following
example shows. The plane curve z(y — z?) = 0 is connected but not
irreducible, This curve is the union of the line z = 0 and the parabola
y = z° which are irreducible but they meet at the origin {0, 0}.

We have an algebraic criterion for an affine variety to be irreducible.

Lemma 2.3.1. An affine variety X is irreducible iff the ring k[X] is
an integral domain.

Proof. Let X; = zeroes(I;) for I; in k[X] be two closed subsets of X.
Assume that X = X; UX, = zeroes (Iy -+ Iy); or, equivalently, Iy - [, = 0.
Thus if £[X] is integral, I, = 0 or I, = 0, or, equivalently X, = X or
X, = X. Thus X is irreducible if £[X] is integral and the converse is

just as obvious, O
Before we discuss components we will do two lemmas,

Lemma 2.3.2. Let Z be an irreducible closed subspace of a topological
space X. If Z is contained in the finite union Wy U...UW, for some
closed subsets of X, then Z C W; for some 1.

Proof. Z equals the finite union (Z N W)U ... U (Z N W,) of closed
subsets. As Z is irreducible, Z = Z N W; for some 4. Thus, Z C W;.
0
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We will next see that a noetherian topological space is not too far
removed from being irreducible.

Lemma 2.3.3. Any noctherian topological space X is a finite union
of #rreducible closed subspaces.

Proof. If X is irreducible, there is nothing to prove. Otherwise, X is
the union Z U W of two proper closed subsets. If Z and W are finite
unions of irreducible closed subsets, then so is X.

Therefore, if X were not a finite union of irreducible closed subsets,
then we could find a proper closed subset X; (either Z or W) with the
same property. Continuing in this way, one could produce an infinite
strictly decreasing chain XX ,2X,22... of closed subsets, which we
know is impossible as X is noetherian. Thus, X must be a finite union
of irreducibles. O

To be more precise about the structure of a noetherian space, one
introduces the idea of a component. A component of X is just a maximal
irreducible closed subspace of X. In our case, this is really not very
abstract. In fact, we have

Proposition 2.3.4. A noctherian space X has only finitely many com-
ponents. The union of these components is all of X. Furthermore, if
X =X, U...UX, is a finite union of closed irreducible subspaces, then
the components of X are ezactly the X;’s which are not contained in any

other.

Proof. If we prove the last statement, it will be enough because
Lemma 2.3.3 says that any noetherian space is such a union. Let Z
be any irreducible closed subset of X. By Lemma 2.3.2, Z C X; for
some ¢. Therefore, any component (maximal Z) must be one of the X;,
which is not contained in another. Conversely, the big X;’s must be
maximal irreducibles; i.e. they are components. |

Next, we will study the algebraic interpretation of the components.

Proposition 2.3.5. Let X be an affine variety.

(a) A closed subset Z of X is a component of X if and only if the ideal
{f € k[X]|f|z =0} 43 & minimal prime ideal of k[X).

(b) There is a one-fo-one correspondence between the components of
X and the minimal prime ideals of k[X).
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(¢) IfXy,..., X, are the components of X, the zero ideal is the inter-
section [ ideal( X;) of finitely many prime ideals.

Proof. We first recall that a component Z of X is a maximal irreducible
closed subset. By Lemma 2.3.1, a closed subset Z of X is irreducible
4= k[z]/ ideal(Z) is an integral domain <= ideal(Z) is a prime ideal.
The rest follows formally. 0

Ezereise 2.9.6. Show that a topological space X is irreducible if and
only if any non-empty open subset of X is dense.

Egercise 2.8.7. Let X be an irreducible topological space. Show that
any open subset of X must be irreducible.

Ezercise 2.8.8. Let X be a topological space which has an open covering
by irreducible subspaces. Prove that X is connected if and only if it is
irreducible.

Ezercise 2.8.9. Let X = | JU; be an open cover of a noetherian topolog-
ical space X. Show that the components of X are precisely the closure
of the components of the U;.

2.4 Affine and finite morphisms

A morphism f : X — Y is affine if there is an open cover ¥ = |JU;
by affines U; such that the open subsets f~!(U;) of X are affine. The
morphism f is fin#te if we can furthermore choose the cover such that
each k[f~1(U;)] is a k[U;]-module of finite type.

If Y is a point P, f ;: X — P is affine if and only if X is affine and
f:X — P is finite if and only if X is a finite set. As for embedding we
have

Lemma 2.4.1.

(a) Leti: X — Y be the inclusion of ¢ closed subvariety. Then i is
findte.

(8) Let f be a regular funciion on o variety X. Then the inclusion j.
D(f) — X is affine.

Ezercise 2.4.2. Prove Lemma 24.1,
Topologically finite morphisms are special.
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Lemma 2.4.3. Let f: X — Y be a finite morphismn. Let Z be a closed
subset of X. Then its image f(Z) is closed.

Proof As the statement is local on ¥ we may assume that X and
Y are affine and k[X] is a k[Y]-module of finite type. Consider the
surjection §* : k[X] — k[Z]. Let I be the kernel of the composition 3 :
KY]5£[X) — k[Z). Then we have an inclusion A = k[Y)/I C k[Z] = B
and B is an A-module of finite type.

By definition a point of ¥ is contained in the image f(Z) if and only if
8, : k[Y') — ks the composition of 1 with é, : k[Z] — k for some 7 in Z.
Thus f(Z) C zeroes(I) and it is enough to show the reverse inclusion.
In other words if y is in zeroes(I) then é, gives a homomorphism A — k
which by Lemma 1.4.2 we can extend to a homomorphism §; : B — k
where z is a point of Z. Thus f(z) = ¢ and we are done. O

‘We have another property of finite morphisms

Lemma 2.4.4. Let f: X — Y be a finite morphism and let 2,52, be
two closed subsets of X where Zo is irreducible. Then f(Z,)Sf(Z2)-

Before we prove this let us see what it says in a special case.

Corollary 2.4.5. If f: X — Y is o finite morphism and y is a point
of Y then the fiber f~1(y) is finite.

Proof. It will suffice to show that each irreducible component of Z
of f71(y) is a point. Let z be a point of Z,. Let Zy = {z}. Then
f(2y) = f(22) = {y}. Hence Z, = Z5. =

Proof of Lemme 2.4.4. It clearly suffices to do the case where X and
Y are affine and k[X] is a k[Y]-module of finite type. Furthermore, we
may assume that Zo = X and ¥ = f(X). Thus k[X] is an integral
domain and is finitely generated as a module over the subring k[Y).
We need to show that there is a non-constant regular function ¢ on
Y such that f*g vanishes on Z; because this will show that f(Z,) C
zeroes(9)Ef(X) =Y. As Z; €X there is a non-constant regular function
h on X which vanishes on Z;. Consider the k[Y]-submodule of k[X]
generated by (h*)ien. Then as this is finitely generated over k[Y), for
i>»0h = <Z (f*g;)h’ where the g; are in k[Y'). Factoring out h’s
0<j<i
we may a.ssum_eJ that go # 0. Now h)f*gp = regular so f*gy vanishes on
Zy. Thus gy = ¢ works. a
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2.5 Dimension

A topological space X is said to have dimension < n if, for any strictly
decreasing chain Z,&Z,-, . .. %Z) of non-empty irreducible closed sub-
sets of X, the length p of the chain £ n. The minimum n that satisfies
this condition is called the dimension of X. Clearly, for a noetherian
topological space X, dim X = maximum of dimensions of the compo-
nents of X.

In algebraic geometry, this naive notion of dimension is quite good.
An affine variety of dimension zero is a finite collection of points. An
affine variety of dimension one is a finite union of irreducible curves plus
a finite number of isolated points.

We will first study how finite morphisms behave with respect to di-
mension.

Lemma 2.5.1. Let f: X — Y be a finite surfective morphism between
varieties. Then dim X = dimY.

Proof. Let Zpz...32Z, be a chain of non-empty irreducible closed sub-
sets of X. Set W; = f(Z;). Then W, 2 ... 2 Wy is a chain of non-empty
irreducible closed (Lemma 2.4.3) subsets of Y. By Lemma 2.4.4 we have
Wy # Wy, if ¢ # ¢'. Thus {W,} is strictly decrensing. Therefore
dimX < dimVY.

Conversely let W,22...2W), be a sequence in Y. We need to see that
we can find a sequence of Z; in X such that f(Z;) = W;. The variety
F~'W, = K, U.. UK, where the K;’s are the irreducible components of
F~'W,. Thusas f issurjective W, = f(K;)U.. .U f(K;) where the f(K;)
are closed and irreducible. As W), is irreducible, W, = f(K;) for some
i- Set Z, = K;. Consider the finite surjective morphism f : Z, — W,.
By induction on p we may find the required Z,—; > ... D Zp in Z,.
This constructs the required {Z;}. |

Next we will check that we have the right definition of dimension in
the simplest case.

Theorem 2.5.2, dim A" =n.

Proof. Let A" = {(z1,.-.,2,)}. Set Z; = {z € A™|zip, = ... =2, =
0}. Then A" = Z,2...27) is a strictly descending chain of closed
subsets. As Z, ~ AP each Z,, is irreducible. Therefore dimA™ > n and
we need to prove that if Z,2...22, is a strictly descreasing chain of
closed irreducible subsets of A™ then p < n. As Z,.1SMA" is closed we
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may find a non-constant regular function ¢ such that Z,_; C zeroes(g).
If we show that dimzeroes(g) < n -1, then p—1 <n—1 and we will

be done.
By Lemma 2.1.2, we have a finite surjective morphism zeroes(g) —
A1, By Lemma 2.5.1 dim zeroes(g) = dim A®~?! = n—1 by induction.
O

From the proof we have

Corollary 2.5.3. Let g # 0 be a non-constant regular function on A",
then dim(g =0)=n — 1.

We also get
Corollary 2.5.4. Any variely has finite dimension.

Proof Let X be a variety. If X is affine then it is isomorphic to a closed
subset of some A", Thus dim X < dim A™ = n is finite. To reduce to

the affine case we use an open affine cover X = X; U...UX,. Then we
finish the proof with

Lemma 2.5.5. dimX = maxdim X;.
Ezercise 2.5.6. Prove this lemma.

Egercise 2.5.7. Let Z C X be a closed subset of an irreducible variety
X. Then Z =X if dim Z = dim X.

2.6 Hypersurfaces and the principal ideal theorem

A hypersurfoce in A" s a closed subset of the form g = 0 where ¢ is a
non-constant regular function on A". These affine varieties are the first
ones to be studied in detail. We assume that the reader knows that the
polynomial ring = k[A"] is a unique factorization domain and the units
in k[A"] are just the non-zero constants.

Theorem 2.6.1. Letg= constant [] ¢;" where the g; are inequiv-

1<i<d !
alent irreductble polynomials.
(a) The components of the hypersurface ¢ = O are the hypersurfaces

g =0.
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(3) k[g=0]= k[A“]/(1<1:I<dye)~

(¢) Each component of a hypersurface has dimensionn—1. Conversely
if X is a closed subvariety of A™ whose components all have di-
mension n — 1 then X is ¢ hypersurfoce,

Proof. Clearly (9 =0)= (g, =0)U...U(gq = 0). To show (a) we need
to see that (1) the hypersurfaces ¢; = 0 are irreducible and (2) they do
not contain one another. As g; is irreducible, the ideal (g;) is prime.
Thus A = k[A"]/(g:) is an integral domain.

Hence the set (g; = 0) = Spec A is irreducible and shows that k[g; =
0)] = k[A"™]/(g:)- This proves (1). For (2) if (g; = 0) C (g; = 0) then g;
vanishes on g; = 0. Thus g;|g; which is impossible. Thus (a) is true.

For (b) we need to see that the polynomial functions & on A" that
vanish on ¢ = 0 are exactly those divisible by ¢; ... g4. If & is divisible by
g1..-94, then h is zero on [ J(gi = 0) = (g = 0). Conversely if-h vanishes
on (¢ = 0), then h vanishes on each g; = 0. By the first paragraph this
means that each g; divides h. As k[A"] is a UFD then this means that
g1 -..gq divides k.

For (c¢) the first statement follows from Corollary 2.5.3. Conversely
we need only treat the case where X C A" is an irreducible closed sub-
variety of dimension n — 1. As X 3 A" for dimension reasons we have
a non-constant regular function g on A" such that X C (¢ = 0) but
dim X = dim(g = 0). Thus X is a maximal irreducible closed subset of
¢ = 0. Thus X is a component of (¢ = 0). Thus X is a hypersurface by
(a)- a

One consequence of the theorem is a general fact about varieties.

Corollary 2.6.2. Ifg is a non-zevo regular function on A" such that
dim(g = 0) < dim(A™) — 2 then g is ¢ unif in k[A"].

We next can prove the general result
Theorem (principal ideal theorem) 2.6.3. Let g be a non-zero

regular function on en irreducible variety X. Then each component of
the closed subset (¢ = 0) = {z € X|g(z) = 0} has dimension dim(X)—1.

Proof. We begin with

Lemma 2.6.4. If X is any irreducible affine variety, Corollary 2.6.2
ss true when X reploces A™.
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Proof. The idea is to reduce to the case where X = A" by the prepa-

ration lemma. Let f: X — A" be a finite surjective morphism such

that f* : k[A"] C k[X] makes k[X] a finite k[A"]-module. By the proof

of Lemma 2.4.4, g satisfies a non-trivial polynomial relation 3" a;¢° =0

where a; are in k[A"]. Let H(Xn44)= Y @;X},, whereap #0is an
0<i<d

irreducible polynomial in k[A"][X, 1] = k_[A"'H] such that H(g) = 0.
Let h : X — A"*! be the morphism given by (f(z),¢(z)). As f is
finite k is finite. Then A(X) C (H = 0) and A(X) is a closed subset of
dimension dim X = n which equals dimH = (n+1) — 1. As (H = 0)
is irreducible, h : X — (H = 0) is a surjective finite morphism. Now
(9 =0)=h7'((H = 0) N (Xn4 = 0)) = h7}((ap = 0) x {0}). Thus
dim(g = 0) = dim((ap = 0)) < n — 2 by hypothesis. By Corollary 2.6.2

ap is a unit on A", Now ap = (— ¥ a;¢*"!)-g. Thus g is never zero
1<i<d

L is regular. O

because ag is never zero, Thus p

For Theorem 2.6.3, assume that Z is a component of ¢ = O where
dimZ < dim(X) —2. We can find an open affine variety U of X such
that U N {g =0} = ZNU is non-empty.

Let h be a regular function on X such that & is not identically zero
on Z NU and zero on the other components of (g = 0) N U, Then if we
take U to be D(k) then Z N is the only component of ¢ly = 0. Now
assume that we prove

Lemma 2.6.5. IfU is a non-empty open subset of an irreducible va-
riety X, then dimU = dim X.

Then we will have dmUNZ = dimZ < dmX — 2 = dimU - 2.
Hence by Lemma 2.64, gly is a unit, Thus UNZ =(g=0)nU is
empty, which gives a contradiction which proves the theorem. Therefore
we need to prove the lemma.

For the lemma clearly dimU/ < dim X as we may take the closure of
a chain in U/, If X = A" then dimU = dim X because we may take
a chain in U of the form {(point of U) C line C plane C ... A"} NU.
If X is affine we have a finite surjective morphism f : X — A" by
the lemma. By Lemma 2.4.4 f(X — U) is a proper closed subset of
A", Let V be its complement. Let U" = f~}(V). Then f : U’ —» V
is a finite surjective morphism. Thus dimU’ < dim¥U < dim X and
dmU’' =dimV = dimA™ = dimX. Thus dim¥U = dimX. We can
reduce the general to the above. |
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Ezercise 2.6.6. Let H = (XY — 2* = () in A3. Prove that the line
L = (X = Z =0) is contained in H and dim L = dim(H) — 1 but the
ideal of regular functions on H vanishing on L is not principal.

As a final test for our topological dimension theory we will check

Theorem 2.6.7. LetZ,=2...2Z) be a strictly decreasing chain of non-
empty closed irreducible subset of a variety. If {Z;} cannot be refined by
another such chain then dim Z; = i for all i.

Proof. Clearly we may assume that Zy is a point p. Let U be an
open affine neighborhood of p. {Z; N U} is such a chain in U and
dim(Z;) = dim(Z; N U). Thus we may assume that X is affine. As-
sume that dim Z; = 4, we want to show that dimZ;+; = i + 1. Now
dim Z;+3 > dim Z; = £. Assume that dimZ;yy > i + p for some p > 2.
Let ¢ be a non-zero regular function on Z;;; which vanishes on Z;.
Then Z; C (¢ = 0)$2Ziy1- Let Z' be a component of (g = 0) D Z;.
Then dimZ’' = i+ (p—1) > dimZ; = ¢ so Z;&Z' and the chain
ZpR...RZiaRZ' 2Z:2...2Z is a refinement. Therefore dim Z;4y =
i+ 11if {Z;} cannot be refined. a

A useful little fact is the following.

Lemma 2.6.8. Let X be a closed subset of an affine veriety Y. As-
sume that each component of X (respectively Y ) has the same dimen-
sion. Then there are regular functions fi,...,fr on Y such that X
is ¢ union of components of zevoes(f1,..., fr) and each component of
zeroes(fy,..., fr) hes dimension dimY —r = dim X.

Proof. If dimX < dimY we need to find a function f; on ¥ which
vanishes on X and does not vanish at {y;,...,y4} which is a finite set of
points meeting each component of ¥ — X . If we do this we will have by
the principal ideal theorem that ¥’ = zeroes(f;) has all its components
of dimension dimY — 1. Then by induction we have ¢,...,gr—) on
¥" such that the conclusion holds. Now just lift ¢y,..., gr—1 to regular
functions fo,..., fr on Y and we will be done.

To find f; for each i let h; be a regular function vanishing on the
closed subset X U {y;,-..,¥%i,-..,y4} with value one at y;. Now take

h “—‘Zh"' O
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Products;
separated and complete varieties

3.1 Products

Let X and Y be two spaces with functions. We have a categorical
product of X and Y.

Lemma 3.1.1. There exists a space with functions X x Y together
with twoe morphisms 7x : X xY = X and 7y : X XY = Y such that
for any space with functions Z the mapping Morphism(Z, X x Y) —
Morphism(Z, X)x Morphism(Z,Y) which sends f fo (mo f,wy o f) is
bijective.

Proof. Asaset X XY is just the set-theoretic product but X xY does not
have the product topology. In fact its topology has more open subsets
than the product topology. As a basis of open subsets, we have the form
0 = {(u,v) € U x V|f(u,v) # 0} where U is open in X and V is open
inY and f(u,v)= 3 gi(u)hi(v) where the g; are regular functions on
U and the h; are rgéi:‘l:a.r functions on V. Clearly we must have all of
these open subsets if 7x and my are morphisms and X X Y is a space

with functions. Alsoif f' is another such function then F(u,v) = -'fﬂ(f—:f)l
must be regular on any open subset O of Q. A regular function G on
any open subset P of X XY is a k-valued function such that P = Oy

where G|o; has the form F' as above.
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Ezercise 8.1.2. Prove in detail that this space with functions X x Y
satisfles the property of the lemma. a

If U and V are subspaces with functions of X and ¥, then U x Vis a
subspace with functions of X x Y. This may be checked easily from the
universal mapping property of products and subspaces. Here one should
note that /' X ¥V is open in X X Y if U and V are open and similarly
with closed.

Returning to algebraic geometry we have

Theorem 3.1.3.

(¢) IfX endY are verieties then X X Y i3 a varicly.
() If X aend Y are affine, then X X Y is affine and k[X x Y] =
k[X) @z k[Y).

Proof. X = XjU...UX, and ¥ = Y] U...UY, are affine open covers
then X x ¥ = |JX; x ¥} is a finite open covering. If (3) is true, each

LEx
X; x Y; is affine and (a) follows.
To prove (b) we will use a trick to avoid the seemingly difficult de-
scription of the product above.

Step 1. The ring k[X] ®; k[Y] is a finitely generated k-algebra with no
nilpotents.

Proof. Clearly the tensor products are generated by X; ® 1 and 1Q ¥;
where {X;}({Y:}) are generators of k[X](k[Y]). Then the tensor prod-
uct is finitely generated because its factors are. To show that the tensor
product has no nilpotents it suffices t¢ show that it injects into the
ring of functions X X ¥ by the homomorphism and sends 3 f; ® g; to
3" fi(z)gi(y). Thus we need to check that if f;,..., f; are linearly inde-
pendent functions on X and ¢;,...,g; arelinearly independent functions
onY then ( fo(z)g4(¥)) are linearly independent fumctions on the product
XxY.

To do this assume that we have a linear relation 3 pp ¢ fp(z)g,(¥) =0

P9
where the pi, o’s are constants. Then when z is fixed we have a relation
Z(E#p,qu(ﬂ)ﬂq(?}) 0. So Eﬂr,qf(-"’) = 0 for z arbitrary as the g,

are lmearly independent, By the linear independence of the f, we have

fip,q = 0 for all p, g. This finishes Step 1.

Step 2. Use the universal mapping property of the tensor product.
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Let A and B be two k-algebras, The tensor product A ®z B is a k-
algebra with two homomorphism 4 : A — A@rB and g : B — A@z B
given by a(a) = a ®1 and ¥p(d) = 1 ® b. Composing with the i’s
gives a bijection k-Alg-Hom(A®; B, C) 2 k-Alg-Hom(A, C) x k-alg-hom
(B, C) for any k-algebra C.

Geometrically we have two morphisms Z = Spec(k[X] ® k[Y])Z3X
(resp. “3Y). Let W be a space with functjons. Then

Morphism( W, Z) 2k-Alg-Hom(k[X] @ £[Y], K[W])

ju
k-Alg-Hom(k[X), k[W]) x k-Alg-Hom(k[Y], k[W])
[
Morphism(W, X) x Morphism(W,Y’)
is the bijection given by f — (wx o f, 7y o f). Thus Z is an affine variety
with k[Z] = k[X] ® k[Y] which has the required mapping property of
X x Y. Thus (b) is true. O

The moral is: one computes easily with tensor products of k-algebras
to prove the relevant properties about products, but set-theoretic prop-
erties about products are easy geometrically,

Ezercise 3.1.4. Prove that the products of quasi-affine varieties are
quasi-affine.

Ezercise .1.5. Show A" = Al x ... x A! (n times).

Ezercise §.1.6. If X and Y are varieties then dim(X x V) = dim X +
dimY and X x Y is irreducible if X and ¥ are. (Hint: for the first part
reduce to the case of two affine spaces).

3.2 Products of projective varieties
The main result of this section is

Theorem 3.2.1. (Segre.) The preduct P" x P™ of fwo projective
spaces is isomorphic o a closed subvariety of Prmtntm,

Proof. IP™ is set-theoretically the set of lines through 0 in the vector
space k"*!, The embedding sends (¢ C k" 4y C k™) to £, @£z in
krt @ kmtE = gmrtmAntl The image is {lines consisting of tensors
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of rank one}. This is what the embedding is in terms of modern linear
algebra but we will need to write it in coordinates.
Let (%g,...,%5) and (yg,...,¥m) be homogeneous coordinates of a

point in P* and P™. Consider F(z,y) = (2) where Z;; = X;-¥;. We
will use (Z,,J) °gign BS homogeneous coordinates in ]P"""""""‘“‘ Now
F(hz, py) = )\pF(w,y) and Z;; # 0if Xy # 0and ¥; #£ 0. So F
defines a mapping § : P" x P® — Prmtntm It 45 obvious that §
is a morphism as D(X;) x D(YJ) = {(zg,---,Zic1,1,Tit1y---»Tn)} X
{(yﬂ?"'!y.f—l,1$yj+1; aym)} D(ZIJ) = {(Z‘J = 1), other coordi-
nates arbitrary} is regular as it is given by a polynomial in the local

coordinates.

The image of S is the closed subset T of P**™+n+m given by rank
(Z;’j) < 1;ie det Z'.'l’-’:l Zﬁ,.‘iz) = ( for all #;,7; and j,,j2- We

2,01 J2.d

want to show that the morphjsmzsz: P xIP™ — T has an inverse which
is a morphism. We define S=! : D(Z; ;) — D(X;) x D(Y;) in local
coordinates by S™(zp,¢) = (2p ;) X (2i,¢)- So S™? is clearly a morphism
and one easily checks using the equations of T' that S~! is the inverse
of S. O

We get
Corollary 3.2.2. The product of (quasi- Jprojective varieties is (quasi-)

projective.

As we don’t have much to do in this section I will give the first example
of the theorem.
P! x P! is isomorphic to the rank 4 quadric XW —Y Z = 0 in 1P5.

3.3 Graphs of morphisms and separatedness

Let f: X — Y be a morphism between spaces with functions. Consider
I'f: X — X xY, the morphism such that mxol'y = 1x and my o'y = f.

Y‘ /\/ Im I(f) = {(=, f(z})}

X

The image of I'y is graph(f) which is a subspace with functions. We
have the morphism I'y : X — graph( f) which is an isomorphism because

its inverse is 7 x|graph(f)-
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The most common graph is the diagonal
{(z, )}
I
AxCXxX
which is the graph(ly). We have a trivial set-theoretic equation
(*) (f,1y)"*(Ay) = graph(f) where (f,1y): X XY — ¥ x Y is the
product morphism of f and the identity 1y of ¥.

Ezercise §.8.1. Check equation *.

A variety X is separeied if the diagonal Ax is a closed subset of
the product X x X. Varieties for many authors are assumed to be
separated and even irreducible. So one must be careful to understand
what any given author means by variety. Much of the theory does not use
separatedness and one sometimes constructs varieties without knowing
(a priori) that they are separated.

Lemma 3.3.2.

(¢) Iff: X — Y is ¢ morphism and Y is a separated variety then
graph{ f) is closed in X x Y.

(b) A subvariety of a separated variety is separated.

(¢) The product of two separated varietics is separated.

(d) (Quasi-)affine and (quasi- Jprojective varieties are separated.

Proof. TFor (a) by (*) graph(f) is closed if Ay is closed. For (b) if
X C Y isasubvarety Ax = Ay N(X x X). So Ax is closed if Ay is.
For (¢) Axxy =7r1_,§Axﬂ7r.z_,1&y CXxY x XxY. (dis also easy.
The diagonal Ax of an affine variety X has equations f(z;) = f(z2) for
all fin k[X]. The quasi-case follows from (b). For the projective case
we need only check that Agn is closed in P* x P*SPriHn One simply
checks that

(1) Apn = P" x P* N {Zij = Z;; for all j and i}.

Ezercise 3.5.9. Prove (1) (locally on P"z'*'z“).

Lemma 3.3.4. If f: X — Y i3 ¢ morphism of twe varietics then
graph(f) is locally closed in X x Y,

Proof. Let Y = JV; be an open affine cover of Y. Let f;: f71V; = V;
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be the induced morphism. Now graph(f) = |J graph(f;) and graph(f;)
is closed in the open f~'V; x V; as the affine variety V; is separated.
Therefore graph(f) is a closed subset of an open subset of X x¥. 0O

‘We will give an example of a variety which is not separated: a line with
two zeroes. Let X = (A' = {(z)}) I (A! = {(y)}) modulo z = y if z #
O#yandz=y. Thus X = A'—{0}I{0;}I1{0,}. Let 7 : A'HA! = X
be the quotient mapping; we give X the quotient space with functions
structure. Then one checks that (A' — {0} IT {0, }) U(A® — {0} IT {0,})
is an open affine covering of X. To see that X is not separated look at
the morphism 1 : A' — X x X given by the morphism A! — X and
A' — X. Then 1(0) = (0,0,) but y(A! — {0}) C Ax. Thus (0;,0,)
is contained in Ax — Ax but is not in Ax. So Ax is not closed.

We want to have an algebraic eriterion for separatedness in terms of

X.

Proposition 3.3.5.  Let X be a variely. The following are equivalent:

() X is separated;

() for all open affine subsets U and V of X we have UNV is affine
and k[U) ®@x k[V] — k[U N V] is surjective.

Proof Assume that X is separated. Then UNV = Apyay = Ax N
(U % V) ig closed in the affine variety U X V. Thus U NV is affine
and k[U X V] — k[U N V] is surjective. Convesely (b) implies that
AxN(U X V) isclosed in U X V but X x X has an open cover by such
affines. So §x is closed. O

Ezercise 3.8.6. Let f and ¢ : X — Y be two morphisms where Y is
separated. Then f = ¢ if f and ¢ agree on an open dense set,

Ezercise §.9.7. In the above situation if & : 0 — Y is a morphism where
0 is a dense open subset of X, there is a maximal open subset of X to
which k extends to a morphism.

3.4 Algebraic groups

A variety G is an algebraic group if we have morphisms m: G X G — G
and inv: G — G such that G is set-theoretically a group with multipli-
cation m and inverse inv.

We will give a few examples.
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(1) The additive group @, is A! with addition m(z,y) = z + y and
inv(z) = —z.

(2) The multiplication group @,, is A! — {0} with multiplication
m(z,y) = zy and inv(z) = =71,

(3) The general linear group GIL{n) = the affine space of n Xn matrices
with non-zero determinant. The group law is matrix multiplica-
tion and the inverse given by Cramer’s rule is a polynomial of the
coefficients and 1/determinant.

Not all algebraic groups are affine. We will later see some examples.

For now we just note

Lemma 3.4.1.

An algebraic group is separated.

Proof. Let (g1,92) be a point of the product. This is in the diagonal iff
90195} = m(g, inv g2) = e (the identity). As {e} is closed, its inverse
image Ax by a morphism is closed. O

3.5 Cones and projective varieties

A cone in A"T! with vertex 0 is a subset C 3 0 such that Ac is in
C for all Ain k and ¢ in €. Thus a cone is just the union of lines
through the origin or just {0}. A cone C in A™*! defines a subset [C]
in IP* and conversely. Here [C] = n(C — {0}) where = is the projection
7 : A"t — {0} — IP". By definition of the topology in PP", closed cones
correspond to closed subsets of IP*.

Lemma 3.5.1. If the cone C is o subvariety of A"}, dim[C] =
dimC - 1.

Proof. Let m : C — {0} — [C] be the induced morphism. Let U
be the open affine in IP® where the i-th coordinate is non-zero. The
point is that we have an obvious isomorphism 3 : ([C]NU) x G, —
(C A=Y (T)), given by ${(cay---sLy---,ca), X) = (0o v, Ay s Ac).
This is an isomorphism. Why? 0O

Thus sometimes one thinks of a projective variety as being the lines
in a cone in an affine space.

Let X be a closed subset in P*. Then the cone over X is a closed
subset C of A",
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Claim. The ideal of C is generated by homogeneous polynomials.

Proof. Let f vanish on €. Then X*f(z) = f(Az) also vanishes on C.
Thus A* gives an action of k* on the ideal I of C. Thus [ is spanned by
the eigenvectors in I which are the homogeneous polynomials. O

Thus X = zeroes(fi,-.., fn) where the f; are homogeneous polynomi-
als in the homogeneous coordinates. In particular D(f) = X —zeroes(f)
are a basis of the topology of X where f is homogeneous.

Ezercise 3.5.2. Show that D(f) is affine if f £ 0.

‘We will need to know

Theorem 3.5.3. (Projective nullstellensatz). Let I be a homogeneous
ideal in k[A"*2). If f is a homogeneous polynomial such that zeroes(f)
in P* contains the projective locus of Cone(zeroes(I)), then f% € I for
some d > 0. In particuler zerces(I) in IP* is empty iff I contains all
homogeneous forms of degree d for some d.

Proof. Cone(zeroes(I)) = (ordinary-zeroes(I)). By assumption f van-
ishes on ordinary-zeroes(I) — {0} but it vanishes at zero because it is
homogeneous. Then the nullstellensatz gives f* € I for n > (0. The
second statement is a simple application with f equal to the coordinate
functions X, ..., X,. a

3.6 A little more dimension theory

We begin with the affine case.

Theorem 3.6.1. ILet X and Y be twe irreducible closed subvarieties
of A", If it is non-empty, each component of X NY has dimension
>dimX +dimY —n.

The projective version is an existence theorem.

Theorem 3.6.2. Replace A™ by P°, then if this number 20, X NY
i3 non-emply and each component has dimension 2 dim X +dimyY —n.

First we do
Theorem 3.6.1 = Theorem 3.6.2.
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Let C(X) denote the cone in A™*? corresponding to a projective va-
riety X. Then the intersection C(X) N C(Y) 3 0 is non-empty. Thus if
Z is a component of X NY then C(Z)is a component of C(X)NC(Y).
Thus dimZ =dimC(Z) — 12 (dim C(X) +dimC(Y) —(n+1)) -1 =
dim X 4 dimY —n. If the number is non-negative dim C{Z) > 1. Thus
C(Z) # {0} and Z is non-empty. It remains to complete the

Proof of Theorem §.6.1. The trick is called reduction to the diagonal.
This uses the fact that X NY &= Axny = (X XY)NAas. Now Apgn =
zeroes(T) — ¥1,T2 —Yo,---,Tpn — Yn) in A" x A* = {(z)} x {(y)} is the
zeroes of n functions. By the corollary of the principal ideal theorem a
non-empty component of the intersection has dimension at least dim( X x

Yy~n=dmX +dmY —n.

3.7 Complete varieties

A variety X is complete if 1t is separated and for all varieties ¥ and any
closed subset Z C X x Y the projection 7y (Z) is closed in Y.

Clearly closed subvarietiés of complete varieties are complete. Also
morphic images of complete varieties in separated varieties are complete.

Exercise §.7.1. Prove these statements.

Lemma 3.7.2. If X is an irreducible complete variety, then any reg-
ular funciion on X is a consiand.

Proof. Let g be a regular function on X. Assume that g # Q. Then
D(g)is a dense open subset of X. Consider the graph I' = (yg(z) = 1)
of % in X x A!. Then ma:1(I") does not contain 0 but as X is complete

and irreducible it is a closed proper subset of A!. Therefore ma:(I) is
one point, say 1/P. Thus g(z) = P if g(z) # 0.Thus g = P. 0

Exercise $.7.9. Show that a quasi-affine complete variety is a finite set.

The main result is
Theorem 3.7.4. Projective varieties are complete.

Proof. By the previous remarks it will suffice to show that IP* is com-
plete. Let Z CY x P" be a closed subset where ¥ is a variety. As the
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problem of showing that wy(Z) is closed is local on ¥ we may assume
that ¥ is affine.

Claim. We may find homogeneous polynomials f; in k[Y][Xo,-..,X,)
such that Z = {y,(zg,-..,2,)) €Y x P*|fi(y,z) = 0 for all i}.

Let C(Z) = closure of (1y X 7)~1(Z) in ¥ x A®™. Then C(Z) is
stable under the action A.(y,z) = (y, Az) where A € Gy,. Thus the ideal
I of C(Z) is G,,-invariant. Thus I has a basis f; of eigenvectors which
are homogeneous polynomials in the X;. As Y x A"t is affine, this
solves the problem of the claim.

We will show that 7y (Z) is closed by writing it as the intersection of
determinantal subvarieties. Let a; be the degree of f; in the X;’s. Let P;
be the vector space of all homogeneous polynomials in k[Xy,...,X,] of
degree a;. Then consider the linear combinations 3~ P, f.. They definea
k[Y]-line mapping Br : €@ Pn_s; @k k[Y] = P, @ k[Y] for all n. Thus in

terms of a basis of the P:., /5 is given by a matrix a, with coefficients in
k[Y). Let E, be the determinantal subvariety {rank a,(y) < dim P, —
1}. Then y is in E,, if and only if 8,(y) is not surjective.

The projective nullstellensatz says that y € 7¥(2) & 77 ' (y) £ 0 &
fitt, X) = ... = fu(y,X) = 0 is a non-empty subset & F,(y) is not
surjective for alln & y € [ E;, for all n. Thus 7y (Z) is the intersections

of closed determinantal subvarieties. Hence 7y (Z) is closed. a

Remark. Using some known algebra it can be shown that 1y (2) = E,
where n = {( max degree of f;)—1}(n+1) + 1.

3.8 Chow’s lemma

Let f: X — Y be a morphism. Then f is birational if there are open
dense subsets U/ and V of X and ¥ such that f induces an isomorphism
UZSV. Thus X and Y are mostly the same.

Lemma 3.8.1. (Chow.) LetY be a complete irreducible variety. Then
there exist e projective variety X and o birational morphism f: X =Y.

Proof. Actually we will prove a stronger result under just the assump-
tion that Y is irreducible and separated. This stronger result is

(1) There exist an irreducible projective variety W and a closed sub-
variety Z C W xY such that 7y : Z — Y is birational and 7y : Z2 = W
gives an isomorphism between Z and an open subset U/ of W.
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First we note how this implies the lemma. If ¥ is complete, 1w (Z) =
U is closed. Hence U = W. Take X = W and f = 7y o7;}. It remains
to prove (1).

Let Y = Y; U...UY, be an affine cover of ¥ by open dense subsets.
Find a projective variety ¥; which contains ¥; as an open subset. Let
0 =Y n...nY,. We have the inclusion Odmgcmalo X...x0 —
Yix...x Y — Y1 .% Y, where the first inclusion is closed, the
second is open, and the tlnrcl open. Hence O is open in its closure O in
Yi%...xY,. Let W= 0 and let Z = closure in W x Y of the graph of
the 1nc1u310n of 0 in Y. Thus by construction 7y : Z — Y is birational
as it is the identity on Q. It remains to check that 7w : Z — W is an
isomorphism between Z and an open subset U/ of W.

Consider the open subset Z; = Z N (W x Y;) for some i. If we can
show that Z; is the graph of a morphism ; : Ui — Y; where U; is
an open subset of W, we will be done because the Z; cover Z and
U=U,U...UU, is open in W. There is no secret what U; is. It is
wnY,x...xYix... X?p_ The morphism ; just reads the i-coordinate
in the product. All we have to dois to show that if (yy,...,¥p,¥) is in
Z; then y; = y. Thus we want to show that Z; is contained in the closed
subset y; = y of U; x Y;. This is trivial because the transposed graph
(y,y) of the inclusion Y in ¥; is closed in ¥; x ¥; and is the closure of
{(u,u)lu € 0} O

3.9 The group law on an elliptic curve

An abelian wvariety is an irreducible complete algebraic group. These
varieties have a special position In algebraic geometry as the study of
geometry on a general variety sometimes leads one to study associated
abelian varieties.

An abelian curve is frequently called an elliptic curve. In this section
we want to study the group law on one elliptic curve.

Consider E, the closure in P2 of the curve y* = z* 4z in A®. Clearly
this curve is irreducible and it is complete because it is projective. Thus
E = zeroes(ZY* — Z2°X — X?). Now EnN line at oo = zeroes {ZY* —
Z*X —X?® Z} is the sole point (0,0,1) in (2, z,y). This point will be the
zero 0 of our group. The inverse is the extension to E of the mapping
(z,y) — (z,—y) on the affine curve. This extends trivially to E in
projective coordinates (z,y,7) — (2, —y,z). Now addition E x E — E
is hard to define,
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The geometry is simple. If e; and e, are distinct points of E, then
ey +e2 = —(e3) where e;3 is the other point of En line spanned by ey, eq:

€1

We will try to compute e3 = (z3,y3) in affine coordinates. The line
spanned by e; = (z;,1) and e2 = (z2,1) is given by {(z1,1) +
M(z2,y2) — (z1,41)) = P()) for Ain k}. The equation for A such that
P(N)ison Eis (1=Ny1 4 2y2)* —((1—=X)z; + 2222 ~((1=N)z1 4 d22) =
0= M1—AX)f() z1,22,¥1,y2) where f is linear in A. Solve f =0 for X
in terms of zy,z5,y1,y2- Then the formulas for z3 and y3 are rational
functions of zy,z,,y1,¥2- If you work hard enough you can show that
the addition extends to a morphism E x E — E and the associative,
commutative, and inverse rules hold. We don't have to learn these calcu-
lations because our theory of curves will eventually prove all these facts
for all smooth plane cubics. Newton discovered these groups but it took
years to understand them theoretically without gross calculation.

3.10 Blown up A" at the origin

There exist many interesting birational morphisms. In this section we
will give an interesting example of a special case of a blown up affine
space.

Let A" be affine space. Then we may consider IP*~! as consisting of
lines (through 0) in A”. Thus a point in A® X IP*~! is a pair (p,£) of a
point p and a line £ in A”. Consider Z = {(p,f)|p € £} C A™ x P*~L,

Thus Z has two projections mpn-1 : Z — PP*~! and man : Z — A™.
What we want to prove is
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Exercise §.10.1.

(a) Z is a closed subvariety of A™ x IP?~},

(b) man is birational and an isomorphism over A" — {0}.

(¢) mpn-: is a locally trivial bundle of lines.

(d) The exceptional divisor E = w42 (0) is locally defined by one equa-
tion in Z. (Hint: Where is E in the line bundle of (¢)?)
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Sheaves

Let’s face it. You can not read most of the current literature in al-
gebraic geometry without knowing sheaf theory. Leray developed his
original version of sheaf theory as 2 means of analyzing the global ob-
structions to piecing together local data. Previously, many geometers
and topologists had worked on these kinds of problems. At the present
time, the previous and current work is normally expressed in the lan-
guage of sheaf theory.

4.1 The definition of presheaves and sheaves

Let X be a topological space. A presheaf F on X is the assignment of a
set (V) to any open subset V of X together with a restriction mapping
resg : F(V) — F(U) whenever U C V are two open subsets of X such
that
(a) resy = identity of F(U) for all open subsets U, and
()] resg oresp‘t,’ =res‘g whenever U C V C W are three open subsets
of X.

A morphism o« - F — G between two presheaves on X is a collection
of mappings a(V) : F(V) — G(V) for each open subset V of X such
that the diagram
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F(V) ﬂgfl. G(V)
(%) res{"}r o(U) resy

F(U) G(U)

commutes whenever I/ C V are two open subsets of X.

First, we will develop a more useful notation for presheaves. If F is
a presheaf on X and V is an open subset of X, then an element o of
F(V) is called a section of F over V. If U is an open subset of V, the
section resg(a) over U is denoted by o|y and is called the restriction of
o to U. If we have a morphism « : F — G of two presheaves and o is a
section of F over V, then a(o) = a(V)(¢) is a section of G over V.

In this improved notation, we have equations expressing the above
lines of the same names.
(¢) |y =0 for all sections o of F over U.
(8) (olv)lu = olu for all sections o of F' over W.

(*) (a(e))lv = a{o|v) for any section o of F over V.

One method of studying a presheaf F is to examine the behaviour of
sections of F over smaller and smaller neighborhoods of a point z of

X. Formally, the stalk F; of F at the point z is Limit F(V), where the
Vaz

V'’s are open neighborhoods of z, which are partially ordered by inclu-

sion. Informally, Fy is the disjoint union [JF(V) of all sections of F

over some open neighborhood of £ modulo two sections being equivalent

if they have the same restriction to a neighborhood contained in their

domains of definition.

If o is a section of F' over some neighborhood of z, ¢ defines an
element o, in the stalk F, of F at z. Here, o, describes the behavior
of ¢ “arbitrarily near to z”. We will next give a lemma which says that
stalks are natural,

Lemma 4.1.1.
Let oo : F —+ G be a morphism of presheaves on X .

(a) Thena induces ¢ unique mapping oy : Fr — G, such that ay(0;) =
(a(0))z for any section o of F over an open neighborhooed of .

(5) (identity of F), = identity of F.

(¢) IfB:G — H is another morphism of presheaves on X,(foa), =
(Bz) o (az)-
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Proof. For (a), the uniqueness is obvious because any element of Fy
may be written as ¢, for some section of F' near z. To see the existence,
one needs to prove that if ¢ and r are sections of F near z such that
0; = T, then (a(0)); = (a(1)):z. If 0, = T:, there is a neighborhood
W such that o¢|w and r|w are defined and equal. Thus (a(c)|lw) =
a(elw) = a(r|lw) = (a(r))|w. Hence, a(¢):; = a7),. This proves (a).
Parts (b) and (¢) are obvious. O

In general, one loses information about a presheaf by just looking
at its stalks. To analyse this loss, one introduces the presheaf D(F)
of “discontinuous sections” of F. For any open subset V of X, define
D(F)(V) = [] Fp. Thus, a section 7 of D(F) over V is a collec-

veV

tion (r,)vev, where 1, is an element of the stalk F,,. The restriction
resg : D(F)YV) — D(F)(U) for an open subset U of V sends (1,),ev
to (Tu)ugu. Clearly, D(F) is a presheaf.

Let o be a section of F over an open subset I/ of X. Then ¢ defines a
section i(¢) of D(F) over U by the formula i(¢) = (¢4 )uev. Thus, i(c)
describes the behavior of & “arbitrarily near” every point of U. Some
additional facts about these constructions are contained in

Lemma 4.1.2.

(a) i:F — D(F) is a morphism of presheaves.
(0) Ifa:F — G is a morphism of presheaves, there is a unigue
morphism D(e) : D(F) — D(G) such that the diagram

a: F-—0u @
Jz' Ii
D(a): D(F)—— D(G)
commutes.
(¢) D(identity of F) = identity of D(F).
(d) IfB: G — H is another morphism of presheaves, D(f 0 o) =
D(8) o D(a).

Proof. Let o be a section of F over an open subset ¥ that contains an
open subset U. Part a) asserts that i(o)y) = i(o)|y. This means that
(¢ly)e = o, for any point u of U. Thus, (e) is true as the equation is
evident.

For (b), let T = (v )vev be a section of D(F) over V. Define D(a)(r)
= (ay(Ty))vev, Which is a section of D(G) over V. By Lemma 5.1.1(a),
D(«) is the only possibility such that the diagram commutes, because
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commuting means that D{a)((¢v)vev) = (a()s)vev for any section o
of F over any V. It remains to check that D(«) is a morphism. Let
U be an open subset of V. We need to see that, for any section 7 =
()vev, D@)(rly) = (D(e@)(r)lu, but D(a)(rly) = D(a)(ru)uev) =
(au(7u))uer = (au(1s))veviv = (D(a)(T))|v. This proves (b).

The proofs of (¢) and (d) are trivial. O

The exact amount of information that is lost by passing to stalks is
described in

Lemma 4.1.3. Let ¢ and T be two sections of a presheaf F over an
open subset V of X. Then o, = 7, for all points v of V if and only if
there is an open covering V = |J Vi such thet oly, = 1|y, for each a.

Proof. It is more instructive to do this yourself. O

A presheaf F is called decent if any section of F' is determined by its
local behavior. Thus, F is decent if, for any two sections ¢ and T over
an open subset V, 0 =T & g, =7, for all v in V < for some covering
V = |JVa, olv, = 7|y, for all «. We now proceed on to presheaves that
are better than decent ones.

Another method for studying a presheaf F is to examine to what
extent one may piece together local sections. Let ¥V = | J ¥, be an open
covering of an open subset ¥V of X. For any section o of F over V,
we have @ section o, = 0|y, of F over V, for all a. This collection
{oa € F(V,)} is not arbitrary. In fact, it must satisfy the patching
condition:

) TalV.nvy = 0glv,nv, for all pairs & and S.
This is because gulv,nv, = (v, )vinv, = olv,nv, = (olv)viny, =
o8 |varv, -

The more than decent presheaves are called sheaves. Basically, a sheaf
is a presheaf whose sections are locally determined and closed under
piecing together. Formally, a sheaf F' is a decent presheaf such that, for
any family V, of open subsets of X and any collection {o, € F(Vy)}
of sections of F over each V, that satisfies the patching condition (1),
there is a section & of F over the union |JV, such that ¢, = o|y, for
each a. The decency of F is equivalent to the uniqueness of the section
o gotten by piecing the o,'s together.

At first sight, the definition of a sheaf seems complicated. As sheaves
frequently arise in mathematics, there is great economy in learning to
think of a sheaf as one idea and not writing out all these conditions
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every time that you deal with them. Actually, we have been dealing
with sheaves for sometime as the next example will show.

Ezample. Let X be a space with functions. The assignment V — k[V]
is a sheaf, where the restrictions are given by restriction of functions.

Ezample. One often deals with sheaves of functions that satisfy some
local condition; for instance, solutions of a differential equation. One
may work with sheaves of differentials.

Ezample. Let F be a presheaf on a topological space. The presheaf
D(F) of “discontinuous sections” of F is a sheaf. It is easy to see that
“discontinuous sections” are locally determined and may be pieced to-
gether from local data satisfying the patching conditions.

Ezercise {.1.4. Give an example of a presheaf that is not decent.
Egercise J.1.5. Give an example of a decent presheaf that is not a sheaf.

Ezercise §.1.6. Let F(U) = {all complex analytic functions f on
U]z% = 1}, for any domain U in €. Show that F is a sheaf under
restriction of functions.

Erercise {.1.7. In Exercise 4.1.6, prove that the stalk of F at the point
( is empty and its stalk at any other point is non-canonically isomorphic
to C.

Ezercise 4.1.8. Let o and T be sections of a decent presheaf over an
open subset U. Show that the subset {u € Ulo, = 7,} = V is open.

Ezercise 4.1.9. What sheaves do you know for which the subset V is
always closed in U?

4.2 The construction of sheaves

Let X be a topological space. Given two (pre-)sheaves Fand Gon X, F
is called a sub-{pre-Jsheaf of G, if, for all open subsets V of X, F(V) is
a subset of G(V) and the restriction in F' coincides with the restriction
in G. Thus, the inclusion F C G gives a morphism of (pre-)- sheaves.

Egzample. If X is a space with functions, then the sheaf V + k[V] is a
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subsheaf of the sheaf of all k-valued functions V ++ kY with restriction
of functions, The sheaf V +— k[V] is called the structure sheaf or sheaf of
regular functions on X. The structure sheaf is usually denoted by Ox.

We will next explain some useful facts about sub-(pre-)sheaves.

Lemma 4.2.1. Let z be a point of X. Let F and G be two presheaves
on X.

(a) If F is a sub-presheaf of G, then the stalk F; is a subset of Gz

(b) A sub-presheaf of o decent presheaf is ttself decent.

(¢) If F is a sub-presheaf of a sheaf G, then there is a smallest sub-
sheaf H of G, that contains F. Furthermore, the stalks F, end H,
are equal

(d) Leta: F — G be a morphism of presheaves, Set pre-a(F)(V) =
image of F(V) in G(V) vie oV) for all open subsets V of X.
Then, pre-a(F) is a sub-presheaf of G and the image of the stalk
mapping oy : Fy — G, is (pre-a( F)),.

Proof.

(a) Let o and 7 be two sections of F over a neighborhood of z. If their
images in G; are the same, their restrictions to a smaller neighborhood
V at z agree in G(V). As F(V) C G(V), their restrictions agree in
F(V). Hence, ¢ and 1 have the same image in F,. Therefore, the stalk
mapping Fr — G Is injective.

(b) If G is decent, then the mapping G(V) — D(G)(V) = [ G. is
. veV

injective for all open subsets V of X. By (&), we must have an injection
F(V) & D(F)V) = ][] F,. Hence, F is decent as its sections are
veV

locally determined.

(¢) Let V be an open subset of X. As H is supposed to be a subsheaf
of G, H(V) must contain all sections of G that are gotten by piecing
together sections of F. Define H(V) to be the subset {¢ € G(V)|o]y, €
F(Vy) for all &, where V = | J V., is some open covering of V}. If we can
show that H is a subsheaf of G, H will be the smallest such subsheaf
and the stalk F, will be clearly equal to H, (because, if z € V, then
z € V, for some a).

To show that H is a sub-presheaf of G, let I/ be an open subset of
V. We need to show that restriction in G takes H(V) into H(U). Let
o be a typical section of H for an open covering V = JV,. Then,
U = J(UN V) is an open covering and (¢|v)|vav, = (o]v.)lunv, €



44 Sheaves

F(U NV,) as Fis a sub-presheaf of G. Therefore, |y is contained in
H(U).

By (b), H is decent. It remains to prove that we may piece together
sections of H. Let W = | Wj be an open covering. Given a section og
of H over Wj satisfying the patching conditions, there exists a unique
section o of G over W such that o|w, = og for each 3 because G is a
sheaf. To prove that H is a sheaf, we have to see that ¢ € H(W). This
follows from the definition of H, as the union of open coverings of each
Wp is an open covering of W,

(d) is very easy. You can try to prove it for practice. O

We will next use the above idea to see that there is a natural way to
modify a given presheaf to make it decent and, even, make it a sheaf.

Let F' be a presheaf on X. Let F” be the sub-presheaf pre-i(F) of
D(F), where i : F — D(F) is the morphism sending a section o of F
to the discontinuous section (¢,)yev. Let F* be the smallest subsheaf
of D(F) that contains F*. A section of F* over an open subset U is a
collection (gy)uev where g, € F, such that there is an open covering
U = |JU; such that there exists sections f; in F(U;) for each ¢ such that
fiu = gu for all u in U;. The next lemma will basically record that these
constructions are natural,

Lemma 4.2.2.

(¢) We have morphisms of presheaves, F — F* C F} C D(F). For
any point z of X, the induced mappings FminiFg are isomor-
phisms, The presheaf F* is decent and F¥ is ¢ sheaf.

() Ifa: F — G is a morphism of presheaves, we have unique
morphsms, a® + F* — G® and o} : F¥ — GY, such that the di-

agram
F— F" ¢ F' C D(F)
l“’ lal’ lﬂ' JD(a)
G— G c G C DG
commutes.

(¢) (identity of F)*=identity of F and (identity of F)*=identity of F?*.
(d) IfB:G — H is another morphism of presheaves (foa) = oa’
and (Boa) = fodal,

Proof. All of the work for proving these statements has been done in
the preceeding sequence of lemmas, a
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In practice, one is given a presheaf F and one wants to prove that F
is a sheaf, or, at least, differs negligibly from its sheafification F*. The
exact result that we will need is

Lemma 4.2.3. Let F be a presheaf on a topological space X. Let v
be a basis of open subsets of X. Assume that, for any open subset V in
v and any covering V = |JV,, by members V,, of v, if o, is a section
of F over V, for each a such that oulv,nv, = oplv,nv, for each pair
a and B, there exists o unique section o of F over V with oly, = 0,
for each «. Then, for eny open subset W in <, the natural mappings
F(W) = F*(W) — FYW) are isomorphisms,

Proof. Let W be an open subset in the basis +. First, we will see
that the surjection F(W) — FYW) is also injective and, hence, an
isomorphism. Let & and 7 be two sections of F over W, Let W = |JWj
be an arbitrary covering of W by open subsets Ws. We need to see
that o = 7 if o|w, = T|w, for each 7. As 7 is a basis, we may refine
the covering W = |JWj by a covering W = |JV,, where the V,’s are
members of 4. Thus, o)y, = 7|y, for all a and, by the uniqueness
assumption, o = 7.

It remains to show that the composed injection F(W)SF*(W) «
FYW) is surjective. We know that any section o of F} W) is gotten by
plecing together sections of F*(Wj) for some covering W = |JWj. If
we refine this covering to a covering W = |J V,, by members V,, of 7, we
see that o is pleced together from sections of F*(V,). By the first part,
F(Vy)SF*(V,) as Vy € v. The existence part of the assumption now
shows that o is actually a section of F over W. Thus, F(W)3FYW),
whenever W € . O

Ezercise 4.2.4. Let F(U) = k for any open subset U of X, where the
restrictions are the identity. Show that F(U)= FYU) may be identified
with constant k-valued functions on U, Show that F*(I/) may be identi-
fied with the k-valued functions on U that are constant on the connected
components of U if X is a locally connected topological space.

Egercise {.2.5. Show that, if « + F — G is a morphism from an
arbitrary presheaf F' to a decent presheaf GG, then a factors uniquely as
oy ALY

Erercise {.2.6, Show that, if & : F — G is a morphism from an arbitrary
presheaf F' to a sheaf G, then « factors uniquely as F — F¥ — G,
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4.3 Abelian sheaves and flabby sheaves

In this section, we discuss two special kinds of sheaves, We will be
preparing the terrain for the next section, where these two kinds of
sheaves will cooperate to give the cohomology of abelian sheaves con-
structed via Godement’s canonical flabby resolutions.

A basic problem in sheaf theory concerns the determination of the
sections of a given sheaf, In practice, one has a very good description of
the sections of the sheaf over small open subsets and the problem is to
understand the sections of the sheaf over large open subsets.

As one is dealing with a sheaf, one knows that the sections over a
large open subset are gotten by piecing together local sections. I want
to draw your attention away from the combinatorial aspects of “piecing
together” approaches to attacking this problem. The function theorist
more naturally asks the following question. “Given a section of a sheaf
over an open subset, when does it extend to a section over a still larger
open subset?”

A sheaf is called flabby if one may always solve this extension problem.
More precisely, sheaf F on X is flabby if, for any open subset V of X,
the restriction mapping F(X) — F(V) is surjective.

Ezample. Let G be any presheaf on a space X. Then the sheaf D(G)
of “discontinuous sections” of G is always a flabby sheaf.

We still can’t say much about our extension problem unless we have
a systematic way to measure the difference between two sheaves, say
G and the flabby sheaf D(G). If we introduce more structure on our
sheaves, we will be able to say a lot about the extension problem.

An abelian sheaf (or sheaf of abelian groups) is a sheaf F on a space
X, such that, for any open subset ¥V of X, the set of sections F(V) is
an abelian group and the restriction F(V) — F(U) is a homomorphism
of abelian groups for each open subset U/ of V. If one replaces “sheaf”
by “presheaf”, one also has a concept of an abelian presheaf.

Ezample. The structure sheaf {x of a space with functions is an abelian
sheaf, The group law is simply given by addition of functions.

The natural way to compare two abelian (pre-)sheaves is called a
homomorphism. A homomoerphism o + F — G between two abelian
(pre-)sheaves is a morphism such that a(V) : F(V) — G(V) is a homo-
morphism of abelian groups for any open subset V.

The next lemma will assert that the constructions of the last two sec-
tions lead to abelian (pre-)sheaves if one starts from an abelian presheaf.
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The only point of the omitted proof is that addition of sections commutes
with restrictions.

Lemma 4.3.1. Let F be an abelian presheaf on o space X with o point

z,

(a) The stalk F; admils a natural structure of an abelian group so that,
for eny open neighborhood V' of z, the mapping F(V) — F; i3 a
homomorphism of groups.

() The decent presheaf F* and the sheaves F* and D(F) are naturally
abelian and the morphisms F — F* — FY — D(F) are homomor-
phismas,

(¢) For any homomorphism a t F — G of abelian presheaves, the
induced morphisms az,c’, ot and D(c) are all homomorphismas
and pre-a(F) 1s an abelian sub-presheaf of G.

Next we will define exact sequences of abelian sheaves. Exactness
gives a precise measurement of the difference between sheaves. Let 0
denote the abelian sheaf with only one section over any open subset.

A short ezact sequence of abelian sheaves is a sequence of homomor-
phisms,

(*) 0— F]g"Fzﬁ’F;; — 0,

between abelian sheaves on X such that, for any open subset V' of X,

(¢) the sequence of groups, 0 — F\(V) — Fx(V) — F3(V), is exact,
and

(b) F3 is the smallest subsheaf containing pre-8( F).

The last condition (#) means that any section of F3 may be gotten by
pasting together local sections of the form fS(section of F3). A slick way
to express the exactness of (%) is to say that, for all points z of X, the
sequence of stalks,

0_’F1,z _"FZ,:I: — F3.:n — 0,

is exact, The reader should check that stalk ezaciness is equivalent to
the conditions (2) and (5).

One may try to use a short exact sequence, 0 = F} — Fy — Fy — 0,
to find out information about the sections of the big sheaf F} in terms of
the sections of the smaller sheaves, Fy and F3. The main question, when
you are trying to use this approach, is, “What is the image of F3(V) in
F3(V) in the short exact sequence, 0 — Fj(V) — (V) = R (V)?”

‘We now will see that this question is easily answered when Fj is flabby.
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Lemma 4.3.2.

Let0 = Fy = B, — F3 — 0 be an ezact sequence of abelian sheaves
on e space X.

(a) If Fy is flabby, then the sequence
0= FA(V) = B(V)— B(V) -0

iz ezact for any open subset V of X,
(b) If both Fy and Fy are flabby, then Fy is also flabby.

Proof. First, we will see how (&) implies (b). We want to show that the
restriction ¢ : F3(X) — F3(V) is surjective for any open subset V of X.
We have a commutative diagram,

B(X)— F(X)
8 j t
(V)" B(V)
of restrictions. By (a), r is surjective, and s is surjective because F; is
flabby. Hence, ¢ must be surjective.

For (@), we need to show that any section ¢ of Fj over V lifis to a
section of F; over V. Let 7y be a lifting of ¢|y, where U is an open
proper subset of V. If we can find an extension 7y of Ty to a section
of F; over a strictly larger open subset U’ in V such that the extension
ry is a lifting of |y, then we may keep extending 7y until we get a
lifting of & over all of V.,

As U is a proper subset of V and our sequence is exact, we may find
an open neighborhood W of a point in ¥V — U such that o|w lifts to
a section ry of Fy over W. If rw|lyaw = Tuluaw, We may piece ry
and 1y together to get a section ryaw, which lifts oyyw. Thus, we
have solved our problem with U' = I/ U W as the patching condition is
verified.

To finish the proof, we will see how to modify the choice of ry to
satisfy the patching condition. Let p be the difference v |lyaw —rw |unw-
Now, p is lifting of olynw — olunw = 0 to a section of F» over UNW,
By the exactness, p comes from a section of Fy over UNW. As F; is
flabby, we may extend p to a section p’ of F; over X which comes from
a section of Fy over X. Let 'y = rw + p'|w. One immediately checks
that 7'w and 7y now satisfy the patching condition. O

We will finish this section with a result showing the existence of some
short exact sequences, Let F be an abelian subsheaf of an abelian sheaf
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Gon X. Let U C V be two open subsets of X. We have a commutative
diagram,

0—F(V)e— G(V) ""(—miG(V)/F(V)—-o

(+) resy resy; Ky

)()

0— F(U)— G(U) L46U)/F(U)—~0

of homomorphisms of abelian groups.

Lemma 4.3.3.

(a) The assignment V — G(V)/F(V) with the restrictions Ky isa
presheaf, say pre-(G/F). The family {g(V)} gives e hamamor-
phism pre-g : G —pre-(G/F).

() Let G/F = (pre(G/F)}. Then we have ¢ natural short ezact
sequence of sheqves, 0 = F ey G'—q»G/F — 0.

Proof. The presheaf axioms for pre-(G/F) follow from those of G.
Thus, (e) is completely trivial. For (), define ¢ to be the compo-
sition G~ S'pre-(G/F) — (pre-(G/F)}* = G/F. To show the se-
quence in (b) is exact, we need only show that the sequence of stalks,
0= F; = G; =+ (G/F), — 0, is exact. By Lemma 4.2.2(a), (pre-
(G/F)): S (pre<{(G/F)! = (G/F):. As the direct limit over V 3 z of
the exact sequences

0= F(V) - G(V)—= G(V)/F(V) =0

is exact, the sequence 0 — F; — G, — (pre-(G/F)); — 0 is exact.
Putting these two facts together, one gets the desired result. O

Ezercise 4.9.4. Show that the presheaf pre-(G/F) is always decent.

Ezercise 4.8.5. Let C be the sheaf of real-valued C'*°-functions on
R2 Let (U) be the set of differentials a(z,y)dz + b(z,y)dy, where

a and b are C®-functions defined on an open subset U/ of R2. Set
df = -g{ .dr + %5- - dy for any C*°-functions f. Show

(a) d defines a homomorphism d: C*® — §} of abelian sheaves on R2.
(b) Let IQ be the smallest subsheaf of § that contains pre-d(C*).
Explain why I consists of “closed” (locally integrable) forms.
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(¢) We have a short exact sequence of abelian sheaves,
0-R' = C® = IQ -0,

where R is the sheaf of locally constant functions.
(d) Give an example of a plane domain U such that C*(U) — I(U)

is not surjective.

Egercise 4.58.6. Let

FcéG

1l

Fcd
be a commutative diagram of abelian sheaves. Show that one may nat-
urally extend the diagram as

F C G —pre—(G/F)— G/F

|

F' C G —pre—(G'/F)— G'/F
Exercise {.9.7. If we have an exact commutative diagram of abelian
sheaves,

O—R—FkR—FK—0
M ] M
0—G,—G:—G;—0

then it may be completed to the commutative exact diagram

0 0 0

|

0—F —FK—F —0
0— G —G,—Gi—0

0—Gi/Fi—= G/~ Gy /Fs —0

4.4 Direct limits of sheaves

Let (Fi)icr be a direct system of abelian sheaves on a topological space
X. For any open subset V' of X, we have a direct system (Fi(V))ier
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of abelian groups, which is compatible with restriction to smaller open
subsets. We may define an abelian presheaf, pre-limit F;, by letting

(pre-limit (F:}(V) = Lmit(F:(V)) for each open subset ¥V of X. The
restriction res |, in this presheaf is given by the limit (resg in F}) for

each open subset I/ of V.
We may also define an abelian sheaf, limit F; by letting limit F; be
_ i 3

the associated sheaf, (pre-limit F;)*. It is natural to ask how close (pre-
limit, F}) is to being a sheaf, but, first, we will study stalks.

Lemma 4.4.1. Let z be a point of a space X. Let (F})ier be a direct
system of abelian sheaves on X. Then we have natural isomorphisms,

limit (F}, ;)3 (pre-limit (7)) = limit (F})) .

Proof. By the definition of stelks, using the fact that two compatible
direct limit processes commute, we find the isomorphisms, limit (F; ;) =

limit (limit F;(V)) ~ limit (limit F;(V)) = hmit ((pre-limit K)(V)) =
(pre-limit F}),. This gives the first isomorphism. The second is a general
fact about the sheafification process }(see Lemma 4.2.2(a)). O

Let (ai) : (Fi) — (G:) be a homomorphism between two direct
systems of abelian sheaves on X. Then it induces homomorphisms,
pre-limit F; —pre-limitG; and limit F; — limitG;. Using this concept,

we have

Corollary 4.4.2. Given two homomorphisms (F‘;)(ﬁ)(G,‘)(ﬁ)(H;) of
direct systems of abelian sheaves such thai, for each i, the sequence 0 —
FiﬂGiﬂH.- — 0 i3 ‘ezact, then the induced sequence,

0 — limit F; — limit G; — Limit H; — 0,

i exact.

Proof. To see that this sequence is exact, we may check the exactness
of stalks at any point z of X. By hypothesis we have an exact sequence,
0— F.— Giz = H;j: — 0 for each i. By the exactness of direct
limits, we have an exact sequence,

0 — Limit(F; ;) — limit(Giz) — limit (H; 2) — 0.
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Thus, by Lemma 4.4.1, we have an exact sequence,
0 — (limit F}), — (limitG;),; — (limit H;); — 0,

which is what we wanted. O

Recall that a topological space X is noetherian if any open subset of
X is quasi-compact. For these special topological spaces, we have

Lemma 4.4.3. Let (F:;) be a direct system of abelian sheaves on a
noetherian space X. Then, we have o natural isomorphism, pre- limit F;

a2 limit F;.
—_

Proof. Let V and W be two open subsets of X. For each i, we have an
exact sequence,

0= F(VUW) - F(V)e Fi(W) - F(VnW),
as F; is a sheaf. As direct limits are exact, we have an exact sequence,
0 — pre-limit (F;}(VU W) — pre-limit (F})(V)®

pre-limit (Fy)(W) — pre-limit (F)(V N W).

Thus, pre-limit (F;) satisfies the patching condition for the union of two

open subsets of X. By induction, it must satisfy this condition for a
finite union of open subsets. As X is noetherian, any union of open
subsets is actually a union of a finite number. Therefore, the patching
conditions are satisfied in general and, hence, pre—M(Fi) is a sheaf

equal to its sheafification limit F;. O

Corollary 4.4.4. On ¢ noetherian space, limit F; is flabby if each F;
is flabby.

Proof. Let V be an open subset of X. We have surjection Fy(X) —
Fi(V) for each i. Thus, limit (F;(X)) — limit(F;(V)) is surjective. By

Lemma 4.4.3, this means that (limit F;)(X) — (limit F;)}(V) is surjective;
i.e. limit F; is flabby. O

Let F; be an abelian sheaf on a topological space X for each i in an
index set I. We want to consider § F; of abelian sheaves on X. By
el
definition € F; is the sheaf associated to the presheaves U — D(Fy(U))
iel el
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with coordinatewise restriction which is clearly a decent presheaf. If I

is finite, then the presheaf = @ Fi. If I is infinite they are different
iel
in general because a section €5 F; is a vector of sections of each F;
i€l
which locally has only finitely many non-zero entries but not necessarily
globally. o
In general @ F; = 1Ml @ F,.
Sfinite
A special case of Lemma 4.4.3 is

Corollary 4.4.5, If X is noetherian then for any open subset U of X,

(P R)W) = PFEW)).

iel iel

Notaetion. If F is a sheaf on a topological space X, the support of F
is {z € X|F, # 0}. If U is an open subspace of X, F|y is the sheaf
on U defined by Fly(W) = F(W) if W is open in U with the same

restrictions as in F.
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Sheaves in algebraic geometry

5.1 Sheaves of rings and modules

The most basic concept in algebraic geometry is the concept of a sheaf
of rings. If X is a topological space, a sheaf of rings A on X is a sheaf
such that for each open subset U of X, A(U) is a ring and restrictions
are ring homomorphisms, Thus the stalk .4, at each point z of X is
naturally a ring.

If X is a space with functions the structure sheaf O is a sheaf of
k-algebras (in particular rings). If  is a point of X, the k-algebra Ox .
is a local ring with maximal ideal m, consisting of germs of functions
which vanish at z. This is a local ring because any element of Ox, ; —m.
is a unit.

A secondary concept is that of ¢ sheaf of modules. Let A be a sheaf
of rings on a topological space X. A sheaf of .A-modules is an abelian
sheaf M such that for any open subset U of X the set M(U)is an A(U)-
module and restriction respects multiplication; i.e. (a-m)|y = a|y -mv
for open ¥V in U, The notion of homomorphism of .A-modules is the
obvious one.

The simplest kind of .4-modules are A®! the direct sum of A with itself
I times with multiplication a(8;)ir = (afi)ier and vector addition as
usual where we require that the vectors (5;) locally have only a finite
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number of non-zero coefficients f:;. These are called free A.-modules. If
I is finite, then # I is called the rank of A®!,

More generally an A-module M is locally free if there is an open cover
X = |JX: such that M|y, is a free A|x,-module. Thus furthermore a
locally free A-module is said to be of finite rank n if all the M|x, have
rank n. A locally free .A-module of rank one is said to be invertible.

An A-module M is said to be guasi-coherent if it is locally given by
generators and relations; i.e. there is an open cover X = [ J X; such that
we have an exact sequence of A|x,-modules

A BAY — M|x, — 0.

Here 1; is given by a I x J matrix of sections of .4 over X; where the rows
with fixed j locally only have a finite number of non-zero entries, Thus if
X is noetherian the matrix 1; is given by an A(X;)-linear transformation
it AX)®T = A(X)®

Let M be an A(X)-module. Then we can form an A-module M® 4(x)
A by taking it to be the sheaf associated to the presheaf

U-M DA4(x) AT
Clearly if My — M; — M3 — 0 is an exact sequence of A4(X)-modules,
the sequence
M @axy A= Mz R@uxy A= Mz Q@) A—0
is exact. In particular if M is the cokernel of a homomorphism
¥ AX)® - AX)®
then we have an exact sequence
AQJE!AGBI — M @ax) A—=0.

Thus on a noetherian space M is quasi-ccherent iff it locally has the

form M; ®_4(x‘.) (.A]X,—).

Erercise 5.1.1, Let M be a sheaf of A-modules, For each n define
Sym™M to be the sheaf associated to the presheaf U — Sym" 4 1) M(U).
Show that Sym" M is locally free if M is locally free, Define the exterior
power A" M and show the same.

Ezercise 5.1.2. Let N and M be sheaves of .4-modules. Define sheaves
Hom 4(NV, M) and N @ 4 M.

Ezercise 5.1.9. Let M be a locally free .A-module of constant rank
r. Then det M = A'M is an invertible A-module, If 0 — M; —
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My — Mjz — 0 is an exact sequence of such A-modules, then we have
a canonical isomorphism

det M3y == det M; @4 det M.

5.2 Quasi-coherent sheaves on affine varieties

Let X be an affine variety with the structure sheaf Q.

We have the following true statements:
(1) HX]IEIr(X,0x),
(2) for any f in k[X], we have k[X](f)ErP(D(f),Ox),
(3) for any  in X we have k[X]._50Ox,, where n, is the maximal

ideal of functions in k[X] vanishing at z.

Here (3) follows from (2) by taking limits over smaller and smaller
affine neighborhoods D(f) of z.

A next objective Is to generalize the above results to a whole class
of sheaves. Let M be a k[X]-module, Then the sheaf M ®x; Ox is
denoted by M. Then we have

Proposition 5.2.1.

(e) M3T(X,M), N
() for any f in k[X], M(nST(D(f),M), and
(¢) foranyz in X, M, S(M),.

Proof. For (c), My = M Oux) Ox,z = M Qyx) k[X]n, = My,. Now

(b) is a special case of (a) because
M|p(s) = M ®xixy Ox|p(p) = Mgy ®uix)y, Onsy-

We will first show that M — T'(X, M) is injective and then use the
injectivity in (b) to show that M — I'(X, M) is surjective.

For the injectivity let m be in the kernel. By (¢) this means for all =
in X we have a function f; in ¥[X] which does not vanish at z such that
f.m =0. Thus the D(f,) covers X. So by the nullstellensatz find &; in
K[X] such that 1 = 3 aifs;. Thusm=1xm = > a;f;;m=3.0=0.
This shows injectivity.

To show surjectivity let X = |JD(f;) be an open cover of X. A
section of M over X is gotten by pasting together a section a; over
D(f;) from M s,y such that o; = «; in M., Replacing f; by a power
we may assume that o; = mﬁ* with m; in M. The patching conditions
means (fim; — fym)(fif;)V = 0. As we may assume that the cover is
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finite we may have a uniform N for all 1 and j. Replace f; by f'N +1
and m; by f¥m;. Then we have fim; = f;m;. Find ¢; in k[X] such
that 1 = > a;f;. Take m = Eajm,-. We have fim = f,-Ea_,-m,- =
Yaifim; = (2 aifj)m; = 1 xm; = m;. Thus m = m;/f; locally. Thus
M — T(X, M) is surjective. O

We have seen in the last section that M is quasi-coherent. We want
to prove the converse. This will use a direct sequence of sheaves with
studies of the “poles” on X of sections of sheaves over D{(f).

Let U be an open subset of a topological space X. Let F be a sheaf
on X. Define a new sheaf yF on X by the rule yF(V) = FA(UN V)
with the obvious restrictions. Restriction to U/ defines a sheaf mapping
F — yF over X.

Let X be a variety. Let f be a regular function on X, Let F be an
Ox-module. Let ?1: be a bookkeeping symbol., We have a sequence F =
1F 17 - %f — ... — where arrows send ?lr(a) to 7 (f @). The
direct limit of this sequence will be denoted by Fs). We have a canonical

homomorphism F{ sy —p(s) F which sends ?1.'(06) = (ﬂ;_u’)') (alp(py)-

Proposition 5.2.2.

(a) An Ox-module F on an affine variety X is quasi-coherent

iff

(b) for all f in k[X] the homomorphism F(5y —p(yy F is an isomor-
phism.

iff

(¢) F =M for some k[X]-module M.

Proof. (c)=>(a) is trivial. We will show that (a)=>(b) and (c)<>(b).
Assume that (a) is true. Then F locally has the form M and the

statement (b) is local on X. Thus we may assume that F = M where

M 1is an k[X]-module. We want to show that (c)=>(b). The key fact is

Lemma 5.2.3. IfU is an open subset of X, then
I(U, Fpy) = T(U, Fl gy

Proof. By Lemma 4.4.3, (U, F5y) = limit }!;F(U, F)=T(U, F)p-

n—oQ

O

Now let D(g) be a small open subset of X.
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I(D(g), M(s)) = T(D(9), M)(yy = (Mig))(p) = Mgy = D(D(gf), M)
This proves (b). Conversely to show that (8)=(c). Let M = I'(X,F).
We have a canonjcal Ox-homomorphism ) ; M — F, which we want
to show is an isomorphism. Now I'(D(g), M) = My but I'(D(g), F) =
(X, p(g) F) = T(X, Fgy) = T(X, F)(g) = Migy. Thus 1 is an isomor-
phism. 0

Thus gives a functor ~ from {k[X] modules} to {quasi-coherent
sheaves 7}, The inverse of ~ is I'(X, ). Thus we have an equivalence
of categories, As for exactness

Proposition 5.2,4. On an affine variety X

(e) 0 — My — My — Ms — 0 is an exact sequence of k[X|-modules
then 0 — M, — M, — M; — 0 is an ezact sequence of gquasi-
coherent O x-modules, and

(b)) 0o F, = Fp = F3 — 0is an ezact sequence of guasi-coherent
Ox-modules then 0 — I'(X, F,) = (X, 7)) = (X, F3) = 0 is
an ezact sequence of k[X|-modules.

Proof. For (a) just check the exactness of stalks at a point z. We want
0= My, = M2pn, = Mz, — 0 to be exact but localization is exact.
Thus () is true.

For (b) in general we have an exact sequence of k[X]-modules,

0= I(X,7) = (X, 7) = (X, 7) = M — 0.

Applying ~ we see that M = 0. Hence M = I'(X,0) = 0. This shows
that () is true, ]

Corollary 5.2.5, Let X be any variety. Letp : F — G be an Ox-
homomorphism between two guasi-coherent Ox-modules. Then Ker(z))
and Cok(v) are quasi-coherent O x-modules.

Proof. The statement is local on X so we may assume that X is affine.
Then by the above Ker(v) = Ker(I'(X, 1)) and Cok(1) = Cok(I'(X, 4)).
O

5.3 Coherent sheaves

Let A be a sheaf of rings on a topological space X. An A4-module M
is coherent if locally it has a presentation A|H — A|$7 — M|y — 0
where I and J are finite sets.
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Now if X is a variety an Ox-module M is coherent iff M locally has
the form M where M is a finitely generated k[U]-module where U is an
open affine subvariety of X. This equivalence uses the fact that k[U] is
a noetherian ring.

Next we have another local to global result.

Lemma 5.3.1. Let M be a k[X]|-module where X is an affine variety.
Then M is coherent if and only if M is a finitely generated k[X]-module.

Proof. The “if” part is clear. For the converse we may assume that
we have a finite open cover X = |J D(f;) where M| DUy = N; where
Niisa k[X](f.)-module of finite type. Here N; = I'(D(f), M) = Misy-
Thus for each i we have a finite number of M;; = —r“L where m; ;

are in M which span the k[X](s,)-module My,. Let M; be the k[X]-
sub-module generated by the finitely many m;;. Now a s My M
but e is locally surjective by construction. Hence a and consequently
I'(X, e): M; — M is an isomorphism. O

Ezxercise 5.9.2. Prove that a quasi-coherent O x-module on a variety X
which is contained in a coherent one is also coherent.

Frequently if i : X C Y is a closed subvariety of a variety, we identify
an Ox-module F on X with an Oy-module 7' on ¥. By definition
F'(=)= F(XN-) with the obvious restrictions and multiplication f-o =
(#* f)-@. The stalks of F' are zero at points in the complement of X and
Fp=F, at z in X. Thus F' is said to be supported by the set X. F'
is a (quasi-)coherent Oy-module if and only if F is a (quasi-)coherent
Ox-module. This can be checked locally when X and Y are affine. In
this case (M) = (M') for each k[X]-module M where M' is the same
group on which k[Y] acts via i*. We will drop the prime in practice.

We have a k-algebra homomorphism of sheaves on Y : Oy — Ox
which is surjective. Let Tx be the kernel; then Zx is the ideal sheaf of
regular functions on Y which vanishes on X. We thus have an exact
sequence

0=IxCOy —=0x =10
as Ix is a coherent y-module because it is quasi-coherent and con-
tained in @y, We can characterize the Oy-modules of the form F’
as those Oy-modules on which Tx acts by zero. Let ¢ be any quasi-
coherent Oy-module. Then the quotient G/ZxG = G|x always has this
form.

Let X be a variety. Consider the diagonal embedding X « X x X.
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We have an open subset U7 of X X X such that X is closedin U. Let Qx
be the coherent sheaf of () x-modules corresponding to Ix/l'z =Tx|a.
This is clearly independent of the choice of I/. The sheaf x is called
the sheaf of differentials which we will study in detail later,

There are some interesting invertible sheaves on the projective space
P". Let m: A"t _ {0} — IP" be the projection. For any integer m let
Opr(m)(U) = {regular functions on #='U which are homogeneous of
degree m}. Thus Opn = Opn(0) and we have natural homomorphisms
given by multiplications Opr (1))@ Opn (m2) = Opn(m;+m;) which
are isomorphisms. Now Opn(m)|(x;20} = X" - Ops. Thus Opn(m)
are invertible and calculations are easy. If X is a closed subvariety of
IP", Opn(m)|x is denoted by Ox(m). More generally if F is an Ox-
module F(m) = F ®@o, Ox(m). We shall later see that any invertible
sheaf on IP" is isomorphic to Opa(m) where m is uniquely determined
ifn>0.

Let z be a point of a variety X and F be a coherent sheaf on X. Let
Flz be the vector space F/m;F, at the point z.

If o is a section of 7 over a neighborhood we denote the image of o,
in F|, by ¢(z). A useful form of Nakayama's lemma is

Lemma 5.3.3. If F is a coherent sheaf on a variety X, let z be o
point of X. Then Fly = 0 for some neighborhood U of x if and only if
Fle=0.

Proof. The “only if" part is clear. Conversely we may assume that X
is affine and F = M where M is a finitely generated k[X]-module. Let
ny be the ideal of 4[X] of functions vanishing at z.

Claim. F|, = M/n M.

As M/n;M is a k[X]-module on which k[X] — n, acts invertibly,
(M/n:M),, = M{n.M but the first M, /n., My, = Fz/m.F,. This
proves the claim. Thus we have M =n, M.

By Nakayama’s Lemma 1.4.3, there is a regular functions f such that
f(z) #0 and fM = 0. Thus M) = 0. Hence U = D(f) is a neighbor-
hood of z such that Fly = M(f) = 0. O

Corollary 5.3.4. In the situation of the lemma

(¢) Let o1,...,0, be sections of F. Then the homomorphism 9 :
O?@“ — F sending e; — oy is surjective in o neighborhood of z
if and only if oy(z),...,0.(z) span F|,.
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() The function x — dimy(F|;) is upper-semicontinuous; i.e. the
subsets {z € X|dimg(F|;) > m} are closed.

(c) This function has constant value m if and only if F is locally free
of rank m.

Proof. (a)is the lemma applied to Cok ¢ as Cok 9|, = F|,/ 3 koi(z).
For (b) let n = dim F|,. We want to show that the set {y € X|dim F|,
< n} contains a neighborhood of z. Choose a basis o1(xz),...,on(2)
which span F|; where &;,...,0, are sections over a neighborhood of z.
Then by (a) o1(¥), . .. ,0.(y) span F|, for y in a neighborhood of . Thus
(b) is true. For (¢) the “4f” part is clear. For the “only if” let 0y,...,0p,
be local sections near a point z such that oi(z),...,0m(z) are a
basis of F|;. Then we have a surjection 3 : Og?m —- Fl, = 0
in a neighborhood U of z. By our dimension assumption |, is an
isomorphism for all y in U. Let (f;,...,fm) be a section of Ker(3)).
Then fi(y) = 0 for all i and y in U. Thus f; = 0, hence Ker 3 = 0 and
1 is an isomorphism. O

Remark. The last fact is not true of schemes in general.

5.4 Quasi-coherent sheaves on projective varieties

Let X be a projective variety in * and C(X) be the cone over X.
Then we have the projection C(X) — {0} — X. The ring k[C(X)] is
graded. Let M be a graded k[C(X)]-module. We want to define a sheaf
M on X. We have the old sheaf M on C(X). Let M = MIC(X)—U-
Let U be an open subset of X. Then M(x~U) is graded. By defi-
nition M(U) = (I'jI(?r“U))deg,ee o. Explicitly if f is a homogeneous
element of k[C(X)] then M]D(f) = M(f)’;:'g,e,_ o where D(f) =Spec
E[C(X))(f) degree 0- Thus M is quasi-coherent on X and it is coherent if
M is finitely generated. We intend to show

Theorem 5.4.1. All quasi-coherent sheaves on X have the form M.
If the sheaf is coherent it has the form M where M is a finitely generated
graded k[C(X)]-module.

Remark. One must be careful because M does not determine M.

Ezercise 5.4.2. Give an example of a non-zero M such that M = 0.
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Proof. Given a quasi-coherent sheaf 7 on X, we want to construct a
graded module. We have a graded ring homomorphism
¥ : K[C(X)] — P T(X, Ox(n))
n>0
. Thus it will suffice to construct a module over this ring. Consider

M = @ DX, F(n).

Claim. We have a natural isomorphism 1 : M3 F.

Let us see what the map is locally. Let f be a degree d homogeneous

regular function on C(X). M |peny = Mgy degree 0 Here an element of
M(§) degree 0 is given by a fraction 7 where a is a section I'(X, F(id)).

This defines a section of F over D(f;). This defines v locally as it is
clearly compatible with localization. More suggestively

1 .
M(f) degree 0 = l!_n}i_t', (P(X': }-)L'}P(F(EI)) ... FP(‘F(“{) —.. )
= (X, limit (F — -}-.?—'(d) —...) [Lemma 4.4.3]

= ['(X,p(y) F) [Proposition 5.2.2] = I'(D(f),F).
This shows that the mapping is an isomorphism.

If F = M is coherent then F = UM. where M; ranges through the
finitely generated graded k[C(X)]-submodules of M. As M; + M; =
(M; 4+ M;)” and F is coherent, it follows that F = M; for some i by the
ascending chain condition as X is quasi-compact. O

Corollary 54.3. If F is a coherent sheaf on a projective variety X C
IP" then there exists ng such that we have o surjection Ogﬁ“"e — F(n)
— 0 when n > ny.

Proof. Just take ng = max degree of generators of M in the theorem.
O

5.5 Invertible sheaves

Let X be a variety. By definition Pic X is the group of isomorphism
classes of invertible sheaves on X with tensor product as group law. This
group is an important invariant of a variety. In this section we want to
develop some methods of computing Pic X. We will assume that X is
irreducible.
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Let ((X)= |J k[U] be the field of rational functions on X.- We

IEUCX
open

define a sheaf of rings Ratx on X by the rule that for any non-empty
subset U of X, Rat x(U) = k(X) with trivial restrictions. Then Ox is
a subsheaf of Rat x. If X is affine then Ratx = kﬂ(}-{’) Thus Ratx is a
quasi-coherent Ox-module in general.

A sheaf of fractional ideals T is a coherent subsheaf 7 CRatx. Let
IFI( X) denote the group under multiplication of all invertible fractional
ideals. A fractional ideal is principal if it has the form f-Ox where f is
a rational function on X. Let P(X) be the sef of principal ideals. Then
P(X) is a subgroup of IFI(X). We have a homomorphism ¥ : IFI(X) —
Pic(X) which sends an invertible fractional ideal into its isomorphism
class. Clearly 3 is a homomorphism.

Lemma 5.5.1. We have an ezact sequence
1 — P(X) = IFI(X)%Pic(X) — 1.

Proof. The kernel of i consists of invertible fractional ideals I such
that Ox ~ I. Let f be the image of 1 under this isomorphism. Then
I = f-0Ox; e, I is principal. Conversely if T is principal T = Ox.
Thus P(X) =Ker().

It remains to prove that 1 is surjective. So we are given an invertible
sheaf £ on X and we want to construct an invertible fractional ideal 7
such that T = £. Let ¢ be a non-zero section of £ over an open dense
subset. Let 7 be the subsheaf of Ratx defined as follows: If [/ is an
open dense subset on X,Z(U) = {f € k(X)|f - o comes from a section
of £ over U}. Tt is trivial to check that multiplication by ¢ defines an
isomorphism Z=L. Thus Z is an invertible fractional ideal. 0

An irreducible divisor D on X is a closed irreducible subvariety I} C X
such that dim D = dim X — 1. The group Div(X) is the free abelian
(additive) group generated by the set of all irreducible divisors on X. A
(Weil) divisor D is an element of Div(X). Thus D = Y n;D; where

finite
coefficients n; are integers and each D; is an irreducible divisor. A divisor

D is effective if all the coefficients n; > 0.

Proposition 5.5.2. Assume that the local rings Ox. of X ot alil
points z are unigue foctorization domains. Then we may associete fo
each divisor D an invertible sheaf Ox(D) of fractional ideals such that
Ox(-) defines an isomorphism Div(X)ErIFI(X) and 1 is o global section
of Ox(D) iff D is effective.
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Proof. Let D = ) n;D; where the D,’s are irreducible. Then Ox(D)
must be IIOx(D;)™. Thus to define Ox (D) we must define Ox(D)
when I} is irreducible.

Claim. Let Ip be the ideal of an irreducible divisor [} in X. Then Ip
is invertible.

If we prove this claim we may define Ox(D) = IB‘. (Thus Ip =
Ox(—D)).

To prove the claim let f be an irreducible element of Zp . Taking
X to be smaller we may assume that f extends to a regular function f
on X and X is affine. Let (f = 0) = DU C where C is a union of the
other components. We may find a regular function § on X such that
vanishes on C but § does not vanish on D. Let k be any regular function
which vanishes on D. Then A - § vanishes on (f = 0). Thus f divides
(R - §)" for n > 0. Now let us take germs at z by erasing ~. Then
flh-g but flg as g does not vanish on D. Thus f[k as Ox,; is a unique
factorization domain. This proves that (f) = Zp .. So (f) is a basis of
Ip in a neighborhood of z. This proves the claim.

Next let I be an invertible ideal; i.e., T € Ox. We want to show

Clatm. I = Ox(—D) for some effective divisor D.

To prove this, first note that Ox = Ox{(0). By induction we may
assume that the claim is true for all strictly larger invertible ideals and
IG0Ox. Consider zeroes(Z) = support(Ox/Z). This is a non-empty
closed subset of X. By the principal ideal theorem any component of
zeroes(Z) has dimension = dim X — 1; i.e., it is an irreducible divisor.
Let E be one of these components, Then I’ = Z. O x(E) is an invertible
ideal strictly larger than Z. Thus I’ = Ox(—D’) where D' is effective.
Hence I = Ox(—~D' — E). This proves the claim,

Now let Z be an invertible fractional ideal. Then 7 = I N Ox is
invertible because each Ox,; is a UFD (a local calculation)., Now 7 and
JI~! are invertible ideals and 7 = 7+ (JZ~*)~!. Thus Z has the form

Ox(D).I will leave the last statement as an exercise, 0

Thus we have reduced the problem of determining IFI(X) to the ge-
ometry of X when X is locally factorial. We will use this to compute
some Pic(X).

Lemma 5.5.3. Pic(A") = {Oa,}.

Proof. As polynomial rings are UFDs all the local rings of A" are
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UFDs. Thus we may apply Proposition 5.5.2. Thus it suffices to prove
that Ip is principal where I is an irreducible divisor on A". Now D =
zeroes(f) where f is an irreducible polynomial. Thus Zp = f - Oan
because f generates a prime ideal. 0

Next we have

Lemma 5.5.4. Ifn > 0, Pic(IP*) = {Opn(m)m € Z} and these
sheaves are non-isomorphic; i.e., Pic(IP™) is the free abelian group gen-
erated by the isomorphism class of Opa(1).

Proof. Let E be an irreducible divisor on P*. Then E = (f = 0) where
f is an irreducible homogeneous polynomial of degree e. Then by a local
calculation Zg = image of Opn(—e) in Op» under multiplication by f.
Hence Zg =~ Opn(—e). Thus as Tg generates Pic(IP") any invertible
sheaf is isomorphic to a product and hence one of the Op-(m). Now
I'(IP*, Opr(m)) is one dimensional if and only if m = 0. Thus if m # 0
then Opn(p + m) # Op-(p)- a

We will later discuss smooth varieties. For them we have

Theorem 5.5.5. IfX is o smooth variety then all the local rings Ox ;
are UFDs.

This theorem is best proved by syzygies d-la Auslander-Buchsbaum
[AB]; a geometric argument is given in Mumford [M2-1]. Several al-
gebraic proofs are in Zariski-Samuel [ZS] but we won’t be using this
theorem in any essential way.

5.6 Operations on sheaves that change spaces

Let f : X — Y be a continuous mapping of topological spaces. Let F
and G be sheaves on X and Y. Then an f-homomorphism ¢ : G — F
is a collection of operators ¥y : G(U) = F(f~'U) for each open subset
U C o taking a section o of G to the section ¥(a) = ¥y(a) such that
Y(alv) = ()| s-1y for all open subsets V of U. In the picture we have

FEg
XY
f

If 7 and G are abelian (sheaves of rings or k-algebras) we define ¥ to be
a homomorphism if each 3y is.
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We have many examples of this concept. If f = 1x, ¥ is just an
ordinary mapping of sheaves. If f : X — Y is a morphism of spaces
with functions then f* defines a k-algebra f-homomorphism Oy — Ox.
If X is a closed or open subvariety of a variety ¥ then for any sheaf F
of Qy-modules, we have an obvious i-homomorphism F — F|x = i*F
where i : X — Y is the inclusion.

Let f: X —+ Y be a continuous mapping. Let F be a sheaf on X. We
can define a sheaf f,F on ¥ by the rule V + F(f7* V) with the obvious
sections, Then we have a tautological f-homomorphism p: folF — F.
Composition with p defines a bijection

Homy (G, fiF) = f-Hom(G,F)
for sheaves G on Y. Cleardy f,F is abelian if F is. We have an ad-
joint which assigns a sheaf f!G on X to a sheaf G on ¥ with a f-
homomorphism ¢ : ¢ — f~*G. In this case composition with ¢ defines
a bijection
Homx(f G, F) = f-Hom(G,F)
for all sheaves F on X. As for a construction f~!§ is the sheaf associated
to the presheaf
U —limit G(V).

V C Yopen

V2 f(U)
Fortunately this hard concept is not used too much in algebraic geome-
try.

Assume furthermore we have an f-homomorphism f* : Ay — Ax
where the Ax and Ay are sheaves of rings on X and ¥. Then if ¢ :
G — Fis an f-homomorphism where F and G are Ox and Oy-modules
then 9 is an (f, f*)-homomorphism if P(g - a) = f*g - ¥(a) where g
is a local section of Oy and « is a local section of §. Clearly if F is
any Ox-module then f.F has a unique structure of an .Ay-module such
that p ;: foF — F is an (f, f*)-homomorphism. We have a bijection
Ay-Hom(G, foF) = (f, f*)-Hom(G, F) for any Oy-module G.

In the other direction given an Oy-module G we may have to define an
Ax-module f*G with an (f, f*)-homomorphism ¢’ : § — f*G such that
Ax-Hom(f*G,F) = (f, f*)-Hom(gG,F) for all Ax-modules F. f*G is
the sheaf associated to the presheaf U — f~G(U) @5-1 Oy (U)Ox(U).
In algebraic geometry f* is trivial to compute and fi is difficult contrary
to their definitions.

Let f: X — Y be a morphism of varieties. Then we have the implicit
f-homomorphism f*: Oy — Ox of k-algebras.
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Lemma 5.6.1.

(a) IfG is o (quasi-)coherent Oy-module then f*G is a (quasi-)co-
herent Ox-module. Also f*G is locally free or invertible if G is.

(b) IfF is a quasi-coherent Ox-module then foF is a quasi-coherent
Oy -module.

() f* is right exzact and f. is left exact and both are additive end
commute with direct limits.

Proof. We begin with (¢). f! is clearly exact as the stalk of f7'§G at
a point z = stalk of G at f(z). For f* is right exact because tensoring
is right exact. Clearly f* commutes with direct limits because tensoring
does. For folet 0 = F; = F, = F3 — 0. Then 0 = fL. 7y — fuF2 —
fuF3 is even exact as a sequence of presheaves much less sheaves. For
direct limit, we need (limit f,.7;)(V) = limit(#;(f ™ V)) but this is true
because spaces are noetherian, Thus (¢) is true.

For () as the statement is locally on X and ¥ we assume that X and
Y are affine. Let M be a k[Y]-module. We have the homomorphism
fr: kY] — K[X].

Claim. fH(M) = (M @y kIX])".

This claim clearly implies (a).

For the claim let 1 : k[Y]® — k[Y]®/ — M — 0 be the presenta-
tion of M. Then 1 : OGBI Oe” — M — 0 is exact. By (¢) f*o :
0% - 0% - fH(M) - 0is exact Thus f*(M) = (Cok I'(X, f*))
but I'(X, f*) is the matrix (f*y;;) where ¥ = (3;;). Thus Cok
DX, f*¥) = M ®yyy kIX].

For (b) as the statement is local on V', let ¢ be a regular function on
Y. We need to prove that

it (— £.)5 by o
is an isomorphism, As F is quasi-coherent
limit ((f* T .7-') B pipenyF
is an isomorphism by Proposition 5.2.2. So by (<),
limit( == Fu ) fao ) ) =pi) FoF
g

where the last equation is trivial. Thus (b) is true. a
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5.7 Morphisms to projective space and affine morphisms

Let f: X — IP" be a morphism where X is a variety. Then we have
the basic sections Xj,...,X, of Opn(1). Pulling-back we get sections
095...,0y, Of the invertible sheaf £ = f*Opn (1), Then the image of the
germs of 0g,...,0, span the Ox, ,-module L[, at each point z of X since
O1,...:,0, Span L.

Lemma 5.7.1. Conversely, suppose we are given en invertible sheaf
L on X and sections oq,...,0, which span £, Then there is a unique
morphism f: X — P" such that L is naturally isomorphic fo f*Opn(1)
and the og’s correspond to the previous o;.

Proof Let D; = {z € X|o;(z) # 0}. Then the D; give an open cover of
X as the o;’s span £, We define fi(z) = (00/0i)(z),...,(0n/oi)(z) for
z in Dys) where the ratios oj/o; are regular functions on Dy. Then
one checks that f; and f; agree on D;D;. Thus they give a morphism
f: X — P". Then one checks that this gives the only solution to the
problem. 0

Ezercise 5.7.2. Give the details of the last proof.

An invertible sheaf £ on a variety X is called very emple if it has
sections oy,...,0, which define a morphism f : X — IP* as before such
that X is isomorphic to its image which is a subvariety of IP®. Such £
is just emple if £L®" is very ample for some positive n.

Ezercise 5.7.9. Show that Ox is very ample if X is an affine variety.

Ezercise 5.7.4. Let X be a product Xy X X3. Let £; and £, be ample
invertible sheaves on X; and X;. Then wjflﬁl ® wjfzf,g is ample on X.

Ezercise 5.7.5. Let £ and M be invertible sheaves on a variety X. As-
sume that £ is generated by its sections; i.e. there are sections oy,...,0,
of £ such that zeroes(oy,...,0,) = 0. Then if M is ample then L M®"
is ample for some n > 0.

Ezercise 5.7.6. Let £ be an invertible sheaf on a projective variety
X C P*. Then £(m) is very ample for m 3 0.

‘We are now in a position to understand affine and finite morphisms.
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Lemma 5.7.7.

(e¢) A morphism f: X — Y of varieties is affine iff for any open affine
subset V =V is affine.

(b) An affine morphism is finite iff K[f71V| is a k[V]-module of finite
type for ail such V.

Proof. By definition f is affine or finite if there is an open affine cover
Y = UV, such that V; has the required property. Thus the “if” is
trivial. The other way is a local to global argument. As the problem
is local on Y we may assume that ¥ is affine and equals V. Thus for
(a) we want to show that X is affine. Let A = k[X] =T'(Y, f.Ox). Let
Y = J D(gi) be a finite covering of Y where the g;’s are contained in k[Y]
such that f~'D(yg;) is affine for each i. Then as f,Qy is quasi-coherent
then A(yy = T(D(g:), fOx) = k[f~1D{(g;)]. Now A is an algebra of
functions. So it has no nilpotent. Also A is a finitely generated k-
algebra because its finite number of localizations A,y are (why?). So
we have morphism & : X — Spec A =+ Spec k[Y] = Y with composition
f. We know that the & : f~'D(g;) — n~'D(yg;) are all isomorphisms.
So h is an isomorphism. Thus () is true. For (b) we have A(,,) is a finite
type k[Y],,)-module = f,Ox is coherent = A is a finitely generated
k[Y]-module. O



6

Smooth varieties and morphisms

6.1 The Zariski cotangent space and smoothness

Let z be a point in a variety X, We have the local ring Ox; of X at
z and its maximal ideal .. The quotient field Ox ./m, is k and the
corresponding surjection Ox . — k is just given by evaluating a germ of
a function at z, We want to study the first order variation of a function
at z. Consider the k-vector-space mz /m2. This finite dimensional space
Cot,(X) is called the Zariski cotangent space of X at z.

Let f be a germ in Ox ;. We define the differential df|, of f at
z to be the class of f — f(z) in m;/m2%. Thus we have a mapping
d-|; : Ox,; —=Cot (X)) which satisfies the following properties:

(e) dconstant [ =0
(b)  d(f+9)lz = df|z +dg|; and
() d(f-9)l: = f(z)dgl: + g(z)df|..

Egercise 6.1.1. Prove these properties. Furthermore show that any

mapping ¥ : Ox, — W into a k-vector-space with the same properties
has the form A(df|;) = ¥(f) where A : m;/mZ — W is a uniquely

determined k-linear mapping.

Clearly the differential df|, describes the first order variation of f at
z. The first properties of Cot; are given in
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Lemma 6.1.2.

(a) dimiCot,X > dim, X = max{dimC}, where C is a component of
X passing through z.

(b) Cot(,,h,,)(Xl X Xg) =COt$1(X1)@COth(X2).

(¢) IfX is en offine variety and n; is the mazimeal ideal of regular
functions vanishing at ¢ then Cot, X = n,/nl.

Proof. To prove (&) we may assume by replacing X by a smaller open set
that X is affine and dim; X = dim X. Let f1,..., fm be regular func-
tions on X which vanish at z such that the differentials dfi|z,...,dfm]z
span Cot X. We want to show that m > dim X.

Let Y = zeroes(fi1,..., fm) in X. Then z isin Y. Let T be the ideal
sheaf of {z} in X. Then (f1,..., fm) C Z. By assumption (fi,..., fm)
|[:— Z[; is surjective. Thus (f1,...,fm) = Z in a neighborhood of z.
Thus z is an isolated point (i.e. component) of ¥. By the corollary to
the principal ideal theorem dim(X)~m < dim{z} = 0. This proves (a).

For (¢), as any element in k[X]—n, acts invertibly on n;/nZ, (n, /)
= (1 /2)n = (e, J2,) = e 2.

For (b) we may assume that X, and X, are affine. By (¢),

COt(ﬁl.tz)(xl X XZ) =ng & k[X2] + k[XI] ® "'-"‘xz/(aame)2
= ﬂ;,;l/'ng1 Rk k® nz,/niz
= Cot,,l(Xl) 4] Cotxz(Xz).
a

The Zariski cotangent space is an algebraic object. We may want
to define a geometric object T;X which is the fangent space of X. By
definition T; X is the affine space whose space of linear functionals is
Cot,X. Thus T:X =Spec( P Sym"(Cot,X)). Clearly T.X has the

n>0

same dimension as Cot X.

A variety X is smooth at point z if dim T, X = dim; X. The variety
is smooth if it is smooth at all its points. In Section 6.2 we will prove
that if X is smooth at z then X is irreducible in a neighborhood of z. In
Section 6.3 we will prove that the set of points where a variety is smooth
is open. In this section we will see that this subset is non-empty. To do
this we may assume that the variety is irreducible by looking for such
points not on any other component.

Lemma 6.1.3. If X is a non-empty irreducible variety, then X is
smooth on an open dense subset.
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Proof. We may assume that X is affine or, even, X is closed in A"
where n = dim X +d. If d = 0 there is no problem because X = A”"
where A" is clearly smooth at all its points. We use induction on d, If
d > 0 we may find a non-constant regular function ¢ on A" such that g
has minimal degree such that X C (g = 0).

Claim. Some partial derivative 8—8)-3-, does not vanish identically on X.

Proof of Claim. Otherwise all a_a)% are identically zero because their
degree < deg g. In characteristic zero this means that ¢ is constant
# 0 but X is non-empty. This is impossible. In characteristic p, we
have ¢ = Za(,.)X-”(’"). Thus ¢*/? = Ea(ll)‘“X(') is a regular function
vanishing on X of smaller degree than g (unless g is constant). This is
also impossible.

‘We may assume that 3%(9: # 0 and now we use the preparation lemma,
which we know works for uy,..., 4. in an open dense subset of A". Thus
if we make a general change of coordinates g will be monic in X, and
-é%(ﬂ: # 0 on X. Consider the projection

X C(g=0)C A"

NS
An—l
As usual 7 is finite. Let ¥ be the image of 7(X). Then as dim X =
dim Y we know the lemma for Y. Let z be a point of X such that
3%(9:], # 0 and n(z) is a point of ¥ at which Y is smooth. We have
a surjection Cotn(z)(Y) ® kdX,[:/(dg|;) = Cot.(X) where dg|; # O.
Thus dim Cot,X < dim Cotr(;)Y = dim ¥ = dim X. Thus dim
Cot,X = dim X by Lemma 6.1.1(a). Hence X is smooth at z. Clearly
the {z} contain an open dense subset. 0

6.2 Tangent cones

In this section we will study higher order terms. Let z be a point on a
variety X. By definition G (Ox ;) is the graded ring @ (m}/m2*!).
n2>0

Then G.(Ox,,) contains Cot (X) as its degree one term. Furthermore
G.(Ox,.) is generated by Cot,(X) as a k-algebra. Thus we have a
surjection ¢ : @ Sym"(Cot (X)) = G(Ox:).

n>0

To make some geometry out of this we have the cone (TC.X )req =
zerces (Ker ) C T X. The TC stands for fangent cone and red means
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we are giving it the wrong sclieme structure because we don’t know

schemes. Thus
(TCaX)red = Spec(Gz(Ox,:)/V0).
In this section we will give a geometric interpretation of the tangent

cone. For this study which is local we will assume that X is affine and
we have a closed embedding X C A" such that z is the origin 0.

Proposition 6.2.1. (TC;X)eq = union of all limiting secants to X
at z.

First we need to give a precise meaning to this statement. Let y be
a point of X — {0}. The secant £, is the line spanned by z and y. The
limit £, as y — z in P"~! should be a limiting secant. We will make
the luniting process precise as follows. The pair (y,{,) are points of A"
blown up at the origin Bo(A™). They are exactly 7=!(X ~{0}) where  :
By(A") — A" is the projection that sends (z € m) to z. Then the lim-
iting secants are K = 7~1(X — {0})N {exception divisor E = {0 € £} =
(0 x IP"~!)). The precise statement of the proposition is simply
(x) (TC2X )red is the cone C(K) overK.

We need to show that 7' ({(TCyX);ed —(0)) = K where 7' : A" —
{0} = P! is a projection. This question is local on P"~!. So we may
compute in D; = {(z) € P*7|z; # 0} = {(y1,...,1(i-place),.-.,yn)}-
A point in Be(A") N A™ x D; = R; has the form (\y,y) for some X
in D;. Thus (),y) are coordinates there. Now E N R; is given by the
one equation A = 0. We have 7=}(X —~ {0 N R; = {(Ay,p)[x £ 0
and f(A-y) = 0 for all f in k[A"] vanishing on X}. So 7~ '(X ~
{0}) N B; = {(Aw, )l9(X,y) = 0 where ANg(},y) = fF(A - y) for some
N >0} = {g()\y) = 0[g(X,y) = ﬁ%ﬂ where N = max ¢ such that
f € (X1,...,Xn)¥ NI where I is the ideal of X in A"}. So KNR; =
{(0,1)|fn(y) = 0} where f = fn+ higher order terms with f in I and
fn # 0 so zeroes{Ker(1/)} = n'(TC;X);ed — (0) N R,. This proves the
proposition. a

As a consequence we have

Corollary 6.2.2. Ifz is not an isolated point of X, the dimension of
any component of (TC,X)req equals the dimension of some component
of X passing through z.

Proof. Clearly we may assume that each component of X passes through
z. The components of 7=(X — {0}) have the form 7—!(C ~ {0}) where
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C is a component of X. As E is locally defined by one equation,
7=3C — {0} N E has components all of whose dimension is dim C ~ 1.
By the proposition these correspond to components of TC;(C) which
has dimension dim C. Again we have TC;(X )req = [JTC2z(C)yea- Thus
the corollary is true. 0

We may now prove

Lemma 6.2.3. If z is o point of ¢ vartety X of which X is smooth,
then X has only one of its components passing through z.

Proof. We may assume that dim; X = dim X. Now dim TC, X,.q <
dim T,X = dim X but these are the same by the corollary. Hence
TC:X:ea = T: X. Thus G;(Ox,z) is the polynomial ring Sym(Cot. X).
Hence G.(Ox,,) is an integral domain. Therefore if f € m! —mi*! and
g € mi—mit! then fg € mit —miti+l. Thus Ok, will be an integral
domain if we can prove

i
Sublemma 6.2.4. [)mi =0.

Proof. Assume X is affine C A" where z = 0. Let #: X — X be the
blowing up of X where X = 7=!(X — {0}) as before. Then il z) =K
is locally defined by one equation in X. Let & be a point of K and

t
e = 0 be a local equation for E near k. Pulling back (#*)(mi) C
i
((e'Ox ). If we show that this last ideal is zero for all i then #* f = 0

t a
in a neighborhood U of K if f € [|m,. Hence, if X is not a point,
# is surjective and #(U) contains a neighborhood of z because P*~! is
complete. We can now finish if we prove the general

Claim. If e is an element of the maximal ideal of a noetherian local ring

A, then (e'A = 0.

Proof. Let a be an element of the intersection. Let [Aa: e!A] = {b €
Ale*d € Aa}. Thus we have an increasing sequence [Aa : ¢*A] C [Aa:
et A]l. As A is noetherian [Aa : e®A] = [Aa: e"t*A] = I for some n.
By assumption Aa = [Aa: e'A]-e'A. Thus I-e™ = I-e™t!, Therefore
by Nakayama’s lemmma [-e® =0 but a € I-e". Soa=0. 0O
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Ezercise 6.2.5. Compute the tangent cone and blowing up of A? at 0
in

(¢) =z =y® (parabola),
(b) 2*=1y* (cusp),
() (z+y)(z—y)+y® =0 (node).

6.3 The sheaf of differentials

Let X be a variety. We have defined the coherent sheaf x on X as
the sheaf corresponding to the sheaf Tp /T3 where A C X x X is the
diagonal. In this section we will learn how to compute 2 x. The first fact
is that we have a k-homomorphism d : Ox — x which sends a local
regular function g to the differential corresponding to the (9(z,)—g(z;))-
modulo 7%.

We will compute when X is affine. Then Qx = dﬁf ] where Q[X] is
the k[X]-module I/I? where I is the kernel of the multiplication ¥[X]®
k[X] — k[X]. Then we have d: k[X] — Q[X].

Lemma 6.3.1.

(e) d(constant)= 0.

(8) d(f+9)=df+dg and d(f-g)= f-dg+g-df for any f and g in
k[X].

(¢) $UX] 1s generated by the differentials df as a k[X]-module.

(d) Given any k[X]-module M and o mapping 6 : k[X]| = M satisfying
the same formal rules as d, there is ¢ unique k[X|-module homo-
morphism £ : Q[X]| — M such that 6(f) = £(df) for all regular
functions f on X.

Proof. (a)and (b) are obvious. For instance, the last part of () follows
from the identity

f(z1)g(z1)— fz2)g(z2) = fz1)(g(z1) ~ 9(22)) + 9(z2)(f(z1) — F(22)).

Part () is a consequence of the fact that f(z1)~ f(z,) generate the ideal
of Ax. This is a special case of Lemma 3.3.2(d) as Ax is the graph of
the identity of X.

The uniqueness in (d) follows from (¢). For the existence, first note
that the rules imply that § : #[X] — M is a k-linear mapping. Thus
we may extend é to a k[X]-module homomorphism V : k[X x X] =
k[X] @ k[X] — M, where k[X x X] is regarded as a k[X]-module via
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w5. Explicitly, V(3 fi(z1)gi(z2)) = 3 gi(z)- 6 f;. One easily checks the

rules:

(1) V(f(z1)) = 5,

2) V(f(z2))=0,

() V(f(z,y) + 9(z,9)) = V(f(z,9)) + V(g(=,3)) and

4) V(f(z.v)9(z,y)) = f(z,2) - V(9(z,¥)) + 9(, 2) - V(f (=, y))-
Using rule (4), you will find V(I?) = 0. By the other rules, V{ f(z1)—

f(z2)) = 6f. Thus V induces a mapping £ : I/I? = Q[X] — M such that

{(df) = éf. By rules (2) and (4), £ is a k[X]-module homomorphism.

Thus the required £ exists. (|

Ezample. Let X),...,X, be the coordinate functions on A". Then
Q[AN] is the free k[AN]-module with basis the differentials dX,,...,
dX .. The classical proof of this will be given in vector notation. We
have an isomorphism i : A" X A" — A" x A" given by i(x,6) = (x,x+0).
Clearly, i induces an isomorphism A" x {0} with Aan. Let J be the
ideal of A" x {0} in A™ x A", Evidently, J/J? is a free k[X,,...,X.]-
module with basis the classes of §;,...,6,. Using the isomorphism i, we
see that we have computed Q[X].

Let f : X — Y be a morphism between affine varieties. Then (f o
7, fome) : X x X — Y %Y is a morphism, which takes Ax into Ay. Its
comorphism must induce an f*-homomorphism, f*: QY] = Iy /I —
[X) = Ix/I%. This means that

(1) fla-w)= f*(a): f*(w) for a € k[Y] and w € Q[Y].
Furthermore, from the definition, one easily verifies the equation
(2) dx(f*a) = f*(dya) for a € k[Y].

In general, f* induces a k[X]-homomorphism f' : QY] @y k[€] —
Q[X]. The next lemma will explain (in a particular case) how f' may
be used to compute §)[X] for an arbitrary affine X as X is isomorphic
to a closed subvariety of an affine space. The general principle is called
implicit differentiation In calculus books.

Lemma 6.3.2. Let Z be o closed subvariety of an affine variety X. Let
J = ideal(Z) C k[X]. Then we have an ezact sequence of k[Z]-modules,
T/ 7 300X] @y HZ15012] — 0,

where i is the inclusion Z C X end d(a) =dx(a) @1 for any a in J.

Proof. By Lemma 6.3.1(c), ¢ is surjective as i* : k[X] — k[Z] is
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surjective. As i*(dxa) = dz(i*a) = dz(0) = 0 when a € J,i*dx(J) = 0.
Thusi’od: J — Q[Z] is zero. By the product formula for differentiation,
dx(J?) C J-Q[X]. Hence d induces the k[Z] = k[X]/J-homomorphism,
d: J/J? — Q[X]®kx; k[Z], mentioned in the statement. The remaining
question is the exactness in the middle.

Is the induced k[Z]-homomorphism m: M =Q[X] @4 x k[2]/d(J/T?)
— 2[Z] an isomorphism? As m is surjective, we may answer “yes” if we
find a surjective k[Z]-homomorphism £ : Q[Z] — M such that Lom is
the identity of M. Let a be a regular function on Z. Let o' be a lifting
of a to k[X]. Note that dx(a') is determined by & modulo(dxJ). Let
6(a) be the class of dx(a') in M. Obviously, 6 : k[Z] — M satisfies the
same formal rules for differentiation as dx does. By Lemma 6.3.1(d), we
have a k[Z]-homomorphism £ : @[X] — M such that £(dz(a)) = é(a).
By (2) above, £ o m(dx(a)) = dz(a). The other requirement for £ that
we want follows because the §(a) generate M and the dz(a) generate

[Z] by Lemma 6.3.1. 0

We have thus far defined differentials and noted some of their formal
properties, but we have failed in relating df with the change of f at a
point z of our affine variety X. This void will be filled in the remainder
of the section.

Lemma 6.3.3. We have o naturel isomorphism

x|, = Cot,(X).

Proof. We may assume that X is affine and n is a maximal ideal of =
in £[X]. Then we want a natural isomorphism
QUX] @urx1 k[X]/n = nfn’.
We have the mapping d-|; : k[X] — n/n? which satisfies the usual rules.
Thus by Lemma 6.3.1 there is a unique k¥[X]-linear mapping £ : Q[X] —
n/n? such that df|, = £(df). As multiplication by n annihilates n/n?, £
induces a k-linear mapping
2:9[X] ®x(x] k[X]/n — n/n? such that df|, = £(df ®1).

Now the mapping k[X] — Q[X]®x)k[X]/n sending f to df @1 satisfies
the same formal rules as d-|;. Thus there is a unique linear mapping
m : n/n? — Q[X] @ x; k[X]/n such that m(df|;) = df @ 1. Clearly £

and m are inverse of each other. ]

Egercise 6.9.4. Find the Zariski cotangent space of C = {22 = y*} at
each of its points.



78 Smooth varieties and morphisms

Egzercise 6.9.5. Let f(X;,...,Xn) be aregular function on A". Show
that df = ZLdXy +--- + f-dX, where the partial derivatives are
computed as usual (for polynomials).

Ezereise 6.9.6. Let X % Y be the product of two affine varieties. Show
that there is a natural isomorphism between Q[X x Y] and Q[X] ®x1x
kX xY] @ QY] @uyy k[X X Y] In other words, any regular differential
on X x Y can be written f(y) - wx + g(z) « wy for wx € Q[X] and
wy € [Y], where wx and wy are unique up to constant factors.

Ezercise 6.9.7. Let C be the circle z2 + y% = 1. Show that

(a) any regular function on C may be written uniquely f[Y]+ X ¢[Y],
where f and g are polynomials,

(b) any regular differential on C' may be written uniquely f(Y)dX 4
(9(Y) + XA(Y))dY, where f,g and A are polynomials.

Ezercise 6.9.8. Let C be circle z% 4 y? = 1, where char(k) # 2.

(¢) Show that D(z) and D(y) cover X.

(b) Show that the two fractional differentials ‘—i;—‘ and —% agree on
D(zy).

(¢) Find a differential w in [X] such that w([p(y) = Qyi and w|p(;) =
~4, (The correct w has something to do with the “differential”
of area in the case of real curves.)

EBzercise 6.9.9. Try to generalize the ideas of Exercise 6.3.8 when C =
{8 442 =1).

By Lemma, 6.3.3 we have an isomorphism x|, = Cot.X for all points
z of X. This solves the problem of the variation of Col X with z.

Lemma 6.3.10. Let X be o variety. Then {z € X|X is smooth at z}
is an open dense subsef of X.

Proof. Let z be a point of X at which X is smooth. By Lemma 6.2.3
there is only one component of X passing through z. Thus we may
assume that X is irreducible. Then {z € X|X is smooth at z} = {z €
X|dimQ x|, < dim X} (see Lemma 6.1.2(a)) which is open by Corollary
5.3.4(b). Thus the subset is open. It is dense because it contains the
general point on each component. O

Ezample 6.8.11. Show that the subset of Lemma 6.3.10 is the maximal
open subset U such that Qx|y is locally free.
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Next we will make a global calculation of Qpr. Consider the projection
7:U = A" — {0} — P". We have a m-homomorphism Qps 8y. As
m is locally a trivial G-bundle, 7* identifies Qpn with a subsheaf of

TallWyegree sero = 0<G_3< dX;- Opn(—1).

Lemma 6.3.12. We have a natural evact sequence
00— QPNW—*’ @ dX,‘ . O]’n('—l)—a’Ol’ﬂ =0
0<ign
where o(dX;-0) = X; - 0.

Proof. Consider the vector field R= Y Xig% on A"*. Then R is
0gign !

a radical vector field; i.e. at any point u of U, R|, points in the direction

of the line ku. Thus a differential form w on U is in (7*$p-) if and

only if w is degree zero and < w, R >= 0; ie. if w = } dX;f; then

3" X;fi = 0. The lemma follows directly. 0

Define wpn = A"{pn. Then we have the

Corollary 6.3.13. wpr 2dXp A...AdX, - Opn(—n —1).

Thus if » > 0 then wpn and hence Qp- are not trivial,

Ezercise 6.8.14. Show that an algebraic group is smooth at each of its
points. (Hint: use translation.)

Proposition 6.3.15, Let X be a closed subvariety of Y and z be a
pointof X. If X and Y are smoothlet fi,..., fg € Ix s be elements such
that dfy |z, ..., dfs|z ave linearly independent where d = dim, ¥ —dim . X .
Then Ix = (f1,..., fa) in some neighborhood of z. Then the sequence
0 — Ix/fzx — Qy|x — Qx — 0 is an evact sequence of locally free
sheaves. Hence if X and ¥ have pure dimension then (det Qy)|x =
det(Z/Z%) @ det Q x.

If X is a smooth variety of pure dimension n then det Qx = wx 8 an
invertible sheaf.

Corollary 6.3.16. (Adjunction formula.) If D is a smooth divisor on
X, then wp = wx(D)|p.

Proof. Replace ¥ by a neighborhood such that the f; are regular and
vanish on X. Let A = Oy /(fi,..., fn). Then G(A) = G m2A/mitt A



80 Smooth varieties and morphisms

is generated by the image of k[Coto(Y)]/(df1[z,...,dfr]:) which has di-
mension = dim X. As G,(Ox ;) is a quotient of G.A and Is a polynomial
ring of dimension = dim X, G(A) = G,(Ox,:.)
As in Lemma 6.2.3 A;/(mlA, is an integral domain and it is iso-
i

morphic to Ox,,/[(m’. Now by a generalization of Sublemma 6.2.4,
T

Nmi and (ymiA, are zero. Thus A, ~ Oy, and Tx = (fi,..., f2) in

i b

a neighborhood of z. The other statements are clearly consequences.

O

6.4 Morphisms

Morphisms are quite fascinating. Let f: X — Y be a morphism. Then
for any y in Y we have the closed subvariety f~!y of X. Thus one has
the whole family {f~!(y)} of varieties attached to a single morphism.
In this section we will study how f~(y) varies with y.

The closure f(X) of the image f(X) is the closed subvariety of ¥ with
ideal Z where T =Ker(Oy — f,0x).

Proposition 6.4.1. The image f(X) contains an open dense subset
U of its closure f(X) such that dim f~*(u) is locally constant on U. In
fact if f(X) is irreducible, dim f~'(u) = dim X —dim f(X) for u in
U.

Proof. We may assume that ¥ = f(X) and ¥ is irreducible, and X and
Y are affine, The key point is

Lemma 6.4.2. In this situation we have ¢ non-empiy open subset U
of Y and thet we may factor f: fU - U as g: f~U - U x A*BU

where ¢ is a surjective finite morphism.

First we will note that the lemma implies the proposition. As g and
my are surjective, U = f(f~'U). Furthermore dim f~!(u) = dim
75 (4) = dim ¥ x A® = n which is constant. Also dim X = dim f-1U
= dim U + dim A" = dim U 4 n. This shows the proposition. It
remains to prove the lemma.

We have an injection k[Y]ff—:k[X | where £[Y] is an integral domain
and k[X] is a finitely generated algebra. Consider K = k(YY) — k[X]
®x(y] #(Y) = A. We may apply the reasoning of Lemma 1.4.1 to find
K[X;,...,X,] C A such that 4 is a K[X),...,X,]-module of finite
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type. Let 0 = fi(y) = y¥ + -+ +¢;;,0 be the equations of the integrality
of the generators of A over K[X1,...,Xy]. The coefficients a;; all lie
in k[Y]¢q)[X3,...,Xs] for some a in k[Y]. Thus k[Y](g)[X1,...,Xn] C
E[X](f+ay and k[X](+q) is a finite type module over the subring. Let
U = D(a) C Y. Then the inclusion gives the required factorizaton.

a

Corollary 6.4.3. The image of ¢ morphism is the finite union of lo-
cally closed subsets.

Proof. Let f: X — Y be the morphism. Find an open subset U of
f(X) as above. Then U is locally closed and f(X) = U [[ f(X — f~1U).
By induction on X this last subset is the union of a finite number of
locally closed subsets. O

We may give an application:

Corollary 6.4.4. Let f : H — G be a homomorphism of algebraic
groups. Then the image of f is closed.

Proof. f(H) is a subgroup which contains an open and dense subset U
of its closure f(H) = K. As f(H) = f(H)-U 2 U, f(H) is open in its
closure. Let k be an element of K. Then & f(H) is open and dense in its
closure K. Thus kf(H)N f(H) is non-empty. Hence k € f(H)f(H)™! =
f(H). Thus f(H) is closed. O

We will prove

Proposition 6.4.5. Let f : X — Y be ¢ morphism. The function
dimg f~1(f(z)) is upper-semicontinuous. If X is irreducible each com-
ponent of f1(f(x)) has dimension > dim X — dim f(X).

Proof. We first prove the last statement. We may assume that ¥ =
f(X) is affine. Then by Lemma 2.6.8 there exist dim ¥ number of regular
functions gq,... such that f(z) is a component of zeroes of (¢1,..., ).
Thus a component of 7} (f(z)) has dimension > dim X ~dim Y. Thus
the second statement is true.

For the first statement we may assume that X is irreducible.

Let U be as in Lemma 6.4.1. Then dim f~!(f(z)) = dim X ~dim ¥
if f(z) € U. Thus dim, f ~'(f(z)) is constant on the open subset f—*U
and dim, f=(f(z)) > constant for all z. Thus it is enough to prove the
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proposition for X = X — f~*(U) which we may assume to have been
done by induction. O

6.5 The construction of affine morphisms and normalization

Consider a sheaf 4 of Oy-algebras on a variety Y. We want to know
when A has the form f.Ox where f: X — YV is an affine morphism.
We clearly have the necessary conditions, (1) A is quasi-coherent and
(2) for an affine open subvariety V of Y the k-algebra A(V) is finitely

generated and has no nilpotent.

Lemma 6.5.1. If A satisfies the conditions (1) and (2) there is a
veriety X = Spec A with @ morphism f: X — Y such thet f,.Ox = A
Furthermore if g: Z — Y is o fivred morphism where Z is o space with
functions we have a bijection between the commutative diagram

zrx
s\ S f
Y

where h is & morphism, and Oy-Alg-Hom(A, g.0z) which sends h to
B fiOx = 9.0z

Proof. Contrary to the complicated statement the lemma 1s easy. If
V is an open affine let 7'V be Spec A(V) and the morphism f :
f~'V = V correspond to the k-homomorphism k[V] — A(V). To do
the construction for a bigger open subset of X, assume that we have
constructed f~'(V;) and F~1(¥;); then to structure f~'(V; U V2) one
pastes together f~!(14) and f~!(¥2) along their open subset f~'(14A N
V2). The verification is elementary. 0

Let Y be an irreducible variety. Let L O ¥(Y") be a finite field ex-
tension of the rational functions on ¥. We want to construct an irre-
ducible variety X and a finite surjective morphism f: X — Y such that
f* 1 k(Y) > k(X) is the given field extension.

As this construction problem is stated it does not have a unique solu-
tion upto isomorphism. To make the solution unique we require that X
is normal; Le. the local rings Ox,, are integrally closed in their quotient
field L. The solution to this problem is called the normaelizaetion of X in
L.
Let L be the sheaf on Y such that L(V) = L for all non-empty open
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subsets ¥ of ¥ with the obvious restriction. Then Oy C Rat(Y) C L.

We need to construct an Qy-algebra A C L. By definition A(V) =
vgV
(integral closure in L of Oy,y).

Lemma 6.5.2,

(e) A is a coherent Oy -module.
() Spee(A) =Y is the normalization of Y in L.

Proof. The problem is local on ¥. So we may assume that Y is afline.
‘We have to prove

(1) A(Y) = integral closure in L of k[Y].

(2) A(Y)is k[Y]-module of finite type.

(3) X = Spec(A(Y)) is normial and ¥(X) = L.

(4) A(D(9)) = A(Y )y for all g in k[Y].

If we prove (1) then (2) will be a well-known theorem in algebra. We
will just indicate the other steps. Let B(Y) be the right side of (1). As
integral closure commutes with localization we have A(V) = ﬂv B(Y)n,

v

but this last group is I'(Y; B) = B. Thus (1) holds. (4) is then just the
commuting of the two operations. For (3) LA(Y') is integrally closed in
its quotient field L. Thus for any point z of X, A(Y)m, = Ox, is
integrally closed in k(X) = L. g

We have

Corollary 6.5.3.

Let X be an irreducible variety., Then the subseiU = {z € X|Ox,, is
integrally closed} is an open dense subset of X.

Proof. Let f: X' — X be the normalization of X in k(X). U is the
complement of the support of the coherent sheaf f,Ox//Ox. 0

6.6 Bertini’s theorem

Let X C " be a closed smooth irreducible subvariety. The set of hyper-

planes in P" is a projective space P™". The homogeneous coordinate of

a hypersurface 3" a;z; = 0 in P" = {z} is (a0,-..,an) in P*". Thus the

locus H = 3~ a;z; = 0in P* X P is a universal family of hypersurfaces.
We want to prove
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Theorem 6.6.1. (Bertini’s.) For a in an open dense subset of P the
hyperplane section X N} a;xi = 0 is a smooth of dimension dim X — 1.

Remark, If dim X > 2 then the general hyperplane section of X is
irreducible.

Proof. Consider the variety Z in X x IP*" which consists of a pair (z,a)
such that 3 e;z; = 0 and z € X and d(} aiz;)|, = 0. Thusz is a
singular point, of the hypersurface. The main point is

Claim., dm Z=n-—1.

If we prove the claim then mpn+ Z is a proper closed subset of IP*".
Clearly its complement is the open subset of the theorem.

For the claim consider the projection # : Z — X. By dimension
theory it will be enough to show that for any z in X the fiber 771(z)
has dimension n — dim X — 1. Now the fiber 7~1(z) is the a such that

(*) Za;z,— =0andd (Z a.'X.') |z = 0.

As d(3" aiz;)|; is an arbitrary vector in T, X, the equation (x) is 1 4
dim T, X linearly independent equations but as X is smooth, dm T, X =
dim X. Then 7~(z) has the required dimension. O
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Curves

7.1 Introduction to curves

A curve is an irreducible separated one dimensional variety. A conve-
nient way to use this assumption is that a point ¢ of curve C is deter-
mined by the local ring O¢,c in k(C). This is a general fact.

Lemma 7.1.1. Let zy and z2 be two points on en irreducible separated
variety X. If Ox ,, C Ox,z, ¢nd my, C ms, then z, = z,.

Proof. Let V) be an affine open neighborhood of x,. Let fy,..., f, be
generators of k[Vj]. Then these functions are regular at z; and, hence,
at z2. Let ¥; be an affine open neighborhood of z2 where they are
regular. Thus k[Vj] € k[V2]. Then the intersection ¥ N V% is the affine
Spec(k[WA] - k[V2]) = Spec(k[V2]). Thus i NV = V; and V2 C V1. So
z) and z; are in ¥j. Now if f is a regular function on V) which vanishes
at zy then f € m,, and hence f € m,,. Thus f vanishes at z;. So z2
is in the closure of ;. Hence 3 = z,. a

The local rings of smooth curves are very special, A discrete valua-
tion ring is a unique factorization domain with exactly one equivalence
class of irreducible elements. Thus if 7 is irreducible then any non-zero
element of the ring may be written uniquely as (unit)s® for n > 0.

Proposition 7.1.2. Let C be a curve with a point ¢. Then the follow-
ing are equivalent:
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(e) C is smooth atc,
(b) Qg is integrally closed, and
(¢) Oc, is a discrete valuation ring.

Proof. (¢) = (b) because a UFD is integrally closed (easy algebra). For
(a) = (¢). We know that m./m? is one dimensional. By Nakayama’s
lemma if 1 € m;—m? then (7) = m, Thus 7 isirreducible and generates
a prime ideal. Let fy be a non-zero element of O¢ ; we want to show
that fo has the form (unit)r”. Otherwise fo is mfinitely divisible by
m. Let f, = f/x". Then (fy) € (f1)... is an increasing sequence of
ideals in the noetherian ring O¢.. Thus (fy) = (fu41) for N » 0. So
f/q'rN'H =a f/';'rN where ¢ is in Og,. Hence 1 = ar which is impossible,
Thus any element of O¢, has the required form. The uniqueness is
trivial. This shows (a) = (¢).

For (b) = (), we know that O¢ is integrally closed. We will try to
prove that m, is principal (hence m./m? is one dimensional). We may
assume thap C is affine and we have a regular function f on C such that
(f = 0) = {c}. By the nullstellensatz m C f O, for some N > 1.

Claim. FEither-m, is principal or m¥ ' C f Oc,.

It will be enough to prove this claim because if m, is not principal we
will have O¢g,c = m C f Og,. which is impossible.

To prove the claim, let y be an element of m~!. Then ym. C f Oc,e.-
Thus ?mc C Oc,¢. Either (1) *}me = Og, or (2) }me C m as O¢ is
a local ring. In case (1) Oc,c = ¥m¢. Thus m. = 50c,c is principal.
In case (2) happens for all y: We find *}1 is integral over O¢,. Hence
4 € Oc, is integral and closed. Thus mN~! = {y}) C f Oc,.. This
proves the claim. O

In the next section we will need

Lemma 7.1.3. Let f: C — D be a birational morphism between fwo

curves where I} i3 ¢ smooth curve. Then the image of f is open and f
- . + -

gives an isomorphism C= f(C).

Proof. f is an isomorphism between open subsets of C and D. Thus
F(C) contains an open subset U of D. Thus the complement of f(C) C
complement of U is finite and hence ¢losed. Thus f(C) is open. Replac-
ing D by f(C) we may assume that f is surjective,

We next note that f is injective and Op sy = Og, for all points ¢
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of C. In fact O¢g,e O Op,s(e. As D is smooth Op, s is a DVR, any
strictly larger ring = k(D). Thus O¢, = Op s(¢ and f is injective by
Lemma 7.1.1. It remains to show that f is 2 homeomorphism. This is
clear because f and f~! take finite sets to finite sets. This is enough.
O

7.2 Valuation eriterions

We begin with the basic

Lemma 7.2.1. Let U be an open dense subset of ¢ variety X. Leiz be
e point of X. Then there is @ morphism f: C — X where C is a smooth
curve such that f~ U is not empty and z is contained in the image

of f.

Proof. We may assume that X is irreducible and affine. Let g : X — A"
be a finite surjective morphism. As X — U 1s a proper closed subset of
X, (X ~ U) is a proper closed subset of A". Let V be its complement.
Then ¢=*(V) C U by construction. Let L be a straight line connecting
f(z) and v where v is a different point of V. (This is always possible
when n > 0); i.e. X 1s not a point (otherwise there is no problem). Now
g~ }(L) is a finite cover of L. Thus it is one dimensional. Also L, and
hence ¢~!(L), is defined by n — 1 equations. Thus by the principal ideal
theorem any component of ¢~!(L) is a curve. Let D be a component
passing through z. Then D maps surjectively onto L. Thus DNg~'V C
DnNU is dense in D. Let f : C — D be the normalization of D in k(D).
Then C is smooth by Proposition 7.1.2. This solves the problem. O

Here is the first criterion.

Proposition 7.2.2, Lei X be a variety. Then X is separated if and
only if e morphism g : U — X from an open dense subset U of a smooth
curve C extends in at most one way to a morphism f:C — X.

Proof. Assume that X is separated and f; and f; are two such ex-
tensions. Consider the morphism # : € — X x X given by ¢ —
(file), f2(c)). Now x(U) = Ay C Ax which is closed. Thus n(C) C
Ax; e, fi(c) = f2(c) for all c. Thus f; = f. This proves one way.
Conversely assume that we have uniqueness. Let (z;.z2) be a point
of Ax. Then Ax is open and dense in Ax. Thus by Lemma 7.2.1. we
may find a morphism 7 : C — Ax such that (z;, x;) is in the image and
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7~ 'Ax = U is dense in C. Thus 7(c) = (f1(c), f2(c)) where fi |v= fz|v.
By uniqueness fy = f;. Hence m(C) C Ax. Thus (z1,z2) € Ax; Le.
Ax is closed. a

The other criterion is about existence.

Proposition 7.2.3. Let X be e variety. Then X 13 complete if and
only if all morphisms g : U — X from a dense open subset U of a smooth
curve C eziend uniguely fo a morphism f:C — X.

Proof. Assume that X is complete. Let R = graph(g) in C x X. Then
R is a curve as X is separated. We want to show that R is graph(f) for
some f. To do this we have to show that 7¢ : R — C is an 1somorphism.
But w¢ is birational. By Lemma 7.1.3 m¢ is an isomorphism of R with
its image but its image is closed because X is complete. Thus f exists
and is clearly unique.

Conversely we will use the statement in the proof of Chow’s lemma;
i.e. There are an open dense subset I/ of a projective variety ¥ and a
morphism h : U — X such that the graph of & is closed in ¥ x X and
projects onto X. Let ¥ be a point of ¥. Let p: C — Y be a morphism
from a smooth curve C such that y is contained in the image of p and
V = p~!U is open and dense in C. Consider ¢ = hop: V — X.
Let f : C — X be the extension. Then the image of (p,f) : C —
Y x V contains the graph of A4 | p(v) @8 an open dense subset. Thus
{(p{c), f(c)) | ¢ € C} C graph(h). Thus ¥ is contained in the image of
the graph. Hence I/ = ¥ and we have a surjective morphism ¥V — X.
Now X is separated by Proposition 7.2.2 and Y is complete because it
is projective. Hence X is complete. This settles the case X irreducible
and the general case follows. 0

Ezercise 7.2.4. How can you prove that a finite union of locally closed
subsets of a variety is closed (open)?

7.3 The construction of all smooth curves

A function field of dimension one is a fleld £ C K such that there is
an element ¢ of K" — k such that K is a finite algebraic extension of the
purely transcendental field k(z).

We want to prove
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Theorem 7.3.1. Given a function field K of dimension one, there
is a smooth projective curve C such that k(C) = K. Furthermore, any
amooth curve D with k(D) = K is uniquely isomorphic to an open subset
of C in a way compatible with the identifications.

Proof. As a set C will be the set of all DVR D k with quotient field
K. The topology is as usual; Le. the proper closed subsets are all of
the finite subsets. Let D be a smooth curve. Then we have an injective
continuous mapping ¢ : D — € which sends a point d to the local ring
Op, 4.

Let E be the normalization of P! = {¢} in K.

Claim. i:E - C is a homeomorphism.

We need to show that i is surjective. Let R be a DVR D k with
quotient field K. Either ¢ or ™! is contained in R. Replace ¢ by ¢~!, if
necessary, so we may assume that { € R. Then B = integral closure of
k{f] in K, B C R. Then p = BNm is a prime ideal of B where m is a
maximal ideal of R. Clearly p # 0 otherwise each element of B — {0}
would be a unit in R and hence K == R which is impossible.

Now B = k[U] where U is the inverse image of A! in E. Thus p is
the maximal ideal of a point e in U C E. Then B, = Og. C R. As E
is normal Og . is 2 DVR. with quotient field K. Hence Og,, = R = i(e).
This shows the claim.

Now we are in a position to describe the curve structure of C in-
trinsically without reference to . Let U be an open subset of C. Let
Oc(U) = [ R. We identify Oc(U) with a ring of functions by taking

ReU

f(c) = f((m;)) where m, is the maximal ideal of the ring c. Thus f(c)
is a number as kZc/m, is an isomorphism. Clearly the mapping i is an
isomorphism.

We next study the functoriality of our construction. Let L O K be
a finite field extension. Let I be the curve of DVRs in L/k. We have
a morphism D — C which sends the ing k Cd C L to dN K. To
check that this works we identify D with the normalization of C in L =
normalization of P! in L as before. Then it is clear and we know D — C
is a finite morphism.

Therefore we know that C is complete because any rational mapping
i: D — C extends uniquely to the morphism above. Now that C is
complete it is projective because the Chow covering is isomorphic to C
(see Lemma 7.1.3). It remains to show that the complement of i(D) is
finite. To do this we may assume that D is affine. Let ¢ be a non-constant



90 Curves

regular function on D. Then C ~i(D)C {C|cF i} ={ceC |t €c
and ¢~!(c) = 0} which is the set of zeroes of a regular function which is
finite. This finishes the proof of Theorem 7.3.1.

By Lemma 3.7.2 we know that %[C] = k for our complete curve C.
Next we will check

Lemma 7.3.2. Let C be o smooth curve with k[C] # k. Then C is
affine.

Proof. Let ¢ € k[C]~k. Then k[C] is a finite extension of k(¢). Let D =
normalization of A! = (%) in k[C]. Then i: C < D is an isomorphism
with an open subset and D is affine. To see that C is affine it is enough
to show that i is locally an affine morphism but this is clear. |

Remark. This result is also true for non-smooth curves.

7.4 Coherent sheaves on smooth curves

Let C be a fixed smooth curve. The irreducible divisors on C are just
points. Let D = ) n;d; be a divisor. The degree of D is 3> n,. Recall
that D is effective if each n; > 0. Thus the degree of effective divisors
is > 0. Recall the theorem that all the local rings O¢, are UFDs. Thus
we may use the theorem which gives an isomorphism Div(c) — IFI(C)
given by D — Og(D). This construction gives all invertible sheaves by
the discussion in Section 5.5. In fact this gives all non-zero fractional
ideals.

Lemma 7.4.1. Let T be o non-zero sheaf of fractional ideals on C.
Then T is invertible.

Proof. Let c be any point of C. Then I, C k¥(C) is a non-zero finitely
generated Oc¢,, module. As O¢ is a DVR, I, = 7"Og, for some n
where 7 is an irreducible element of O¢c. Thus Z, is free of rank one.
Hence T is locally free of rank one. 0

Let F be an arbitrary coherent sheaf. Let Rat(F) = limit (U) be
V0

the rational sections of F. Let Rat(F) be the sheaf on C which assigns
Rat(F) to any non-zero open subset on C' with obvious restrictions. If
F = Og¢, then Rat(O¢) = k(X) and Rat{(O¢) is the sheaf defined
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before. As F is coherent Rat(F) is a finite dimensional vector space
over k(C). We define rank(F) = dimy(c)Rat(F).

Now Rat(F) is a quasi-coherent O¢-module and we have a natural
Oc-linear mapping i : F —Rat(F). The kernel of F is a coherent sheaf
Fiorsion Which consists of the forsion in F, where a local section o of
F is torsional if there exists a non-zero regular local function f such
that fo = 0. The image F' of i is forsion-free. Thus we have an exact
sequence

(*) 0 — Fiorsion —+ F — F' —+ 0.

Thus the study of an arbitrary coherent sheaf F has two parts, the cases
where F is torsional and torsion-free.

If F is torsional its support consists of a finite number of points
Cye+ssCq.  Then the stalks F,, are finitely generated torsion Og¢,g,-
modules. Therefore they are finite dimensional &-vector-spaces. We
may define an effective divisor Div(F) = 3 (dimy Fy;) - ci.

1

Lemma 7.4.2. Let F be a torsional coherent sheaf

(&) For any open subset U of C,
(U, F) = D Fe,

el
(8) dimy I'(C,F) = deg Div(F).
(e) F is flabby.

Proof. The statements (b) and (c) follow from (a). For (a) we have

an evaluation mapping I'(U, F) — & F, given by taking germs. It is
ael

an isomorphism because Flcomplement of support of * = 0. Thus to show

injectivity note that a section of F is determined by its germs at all

points. To show surjectivity an element of € F., is the germ of a

el
section ¢ of F over a neighborhood in U on support of F. Then extend
o by zero to get it to define over U. 0

Next we consider the torsion-free case.

Lemma 7.4.3. Let F be a forsion-free coherent sheaf.

(a) F is locally free of rank = rank(F).
() We have a filtration 0 C Fy C F2++» C Frank(r) = F by coherent
sheaves F; such that all composition factors are invertible.
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Proof. Tt suffices to show the statement (b). If rank (F) = 0 then 7 =0
and there is no problem. If rank(F) >0, let L be a line in Rat(F). Let
Fi = LN F where L is the constant subsheaf of Rat(F) associated to L.
Thus Fy is rank one and isomorphic to a sheaf of fractional ideals if we
choose a generator of L. Thus F is invertible and F/F CRat(F)/L
is torsion-free of one less rank. Hence we are done by induction. O

Ezercise 7.4.4. Show that the sequence () splits (unnaturally).

Let F be a torsion-free coherent sheaf on €. Let D be a divisor.
We denote the subsheaf 7. O¢(D) in Rat(F) by F(D). Here F(D) is
isomorphic to F @a, Oc(D). If D is effective, the sheaf of rings O¢|p
is denoted by Op and F|p = F/F(~D). In this situation we have

Lemma 7.4.5.

(a) F|p is torsional
(8) Div(F|p)= (rank F)D.
(¢) dimg I'(C, F|p) = (rank F)(deg D).

Proof. Clearly F|p is torsional. By Lemma 7.4.2 for (b) and (¢) we just
have to compute the stalk of F|p at a point c. So we may assume that
F is free and the result is trivial. a

7.5 Morphisms between smooth complete curves

Let f: C — D be a non-constant morphism between smooth complete
curves. As f(C) = D we have an inclusion k(D) C k(C) which is a
finite fleld extension. Let deg f = dimy(py &(C) be the degree of the
field extension.

Lemma 7.5.1.

(a) f is a finite morphism,

(b)  fiOc is a locally free Op-module of rank deg f, and

(¢) if F is a locally free coherent sheaf on C, f.F is a locally free
Op-module of rank = (rank F)(deg f).

Proof. By the construction of complete curves C is the normalization
of D in ¥{C). Thus (e) is true. Now (b) is a special case of (¢). To
prove (¢) note that f.F is torsion-free and Rat(F) =Rat(f..F). Also
f+F is coherent because F is. This is a local fact. If [/ is open and
affine in D, then f~'U s affine and f, F(U) = F(f~}(U)) which is a
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finitely generated k[f~!U]-module and hence a finite generated k[U]-
module by (&). Now rank f,F = dimypyRat(f.F) = dlmk(c)Rat(]:)
dimg(py k(C) = (rank F)(deg f).

Let E be a divisor on D. We may define a divisor f™'E on C by
the formula Oc(f~1E) = f*(Op(E)) where f*(OD(E)) is considered
as a sheaf of fractional ideals on C. Clearly f~! is a homomorphism
Div(D) —Div(C).

Lemma 7.5.2. deg(f'E) = deg(E)-deg f.

Proof. We may assume that F is a point d as both sides are homomor-
phisms. Then deg(f~!d) = dim; I'(C, f*O4) = dim; (D, fo(F*O4)) =
dim; I'(d, (f.Oc)la) =rank f.Oc = (deg f):1=(deg f)(deg d). O

Let f be a non-zero rational function on a smooth complete curve
C. Then we may define the divisor div(f) by the formula f-Oc¢ =
Oc(~div f). We have a morphism f : C — P! given by f(c) = f(c)
when f is regular. This corresponds to the field extension k(1) C k(C).
This is related to div(f) by

Lemma 7.5.3. div(f) = f'l(O—oo).

Proof. The divisor on P!, (div ), where { is the coordinate function, is
0-00. Clearly f~1(div(¢))=div(f). So the result follows. O

This formula has a fantastic global statement.
Corollary 7.5.4. deg (div(f))= 0.

Proof. deg(div(f))=(deg )(deg(0-c0))= 0. &

This important result allows us to define the degree of an invertible
sheaf £ by the following equation

deg L =deg D

if £ a8 O¢(D). The point is that this is well-defined because if D,
and D are two choices then Dy = Dy+4div(f) for some f. Thus deg
Dy =deg D,.

We can now make another global statement.
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Lemma 7.5.5.

(e) dimy I'(C,L) < deg L+ 1L
(b) In particular T'(C,L) = 0 if deg £ < 0.
(¢) IfdegL =0 then I(C, L) # 0 if and only if L = Og.

Proof. Let us assume that I'(C, £) # 0. Then £ =~ Og(D) where D is
effective. For (c) if deg £ = 0, then deg D = 0 and hence D = 0. Thus
(¢) is true. For (b) note that deg(D) 2 0. If D = 0, I'(C, O¢(D)) =
I'(C,0¢) = k. Thus (a) is true in this case. If degD > 0, then D =
d + Dy where D, is effective. Then we have an exact sequence

0 — Oc(D1) = Oc(D) = Oc(D)]g — 0.
Take a global section to have
0 = T(Oc(D1) — H(Oc(D)) — T(Oo(Dla)
Thus dimg IN{Oc({D)) € dimg T{(O¢(D,)) + dimy F(Oc(D)]d) but the

last number is one. So we are done by induction. O

Egercise 7.5.6. Let f be a rational function with only one pole of order
1. Then f:C — P! is an isomorphism.

7.6 Special morphisms between curves

Let f : C — D be a non-constant morphism between smooth complete

curves. Let d be a point of D, Consider the divisor f~'d= 3 e, c
cef~1d
where e, is a positive integer called the ramification indezof c. If e, > 1

then f is said to be ramified at c.

As f corresponds to a finite field extension k(D) C k(C). We say
that f is separable (purely inseparable) if k(C)/ k(D) is separable (purely
inseparable). By elementary field theory we may factor f = fo- fi where
f2 is separable and f is purely inseparable. Thus the study of a general
morphism is reduced to the separable case and the purely inseparable
which only happens when the characteristic of k is a prime.

First consider the case when f is separable. Let Tr: k(C) — k(D) be
the trace. Then Tr(k - g) is a non-degenerate symmetric k(D)-bilinear
form on k(C). The first fact is that Tr induces an O¢-linear mapping
Tr: fvO¢ — Op because if d is a point of D, we may compute Tr
on f,O¢,q in terms of a free Opg-module basis of fiO¢ 4. Clearly
Tr|g : f+Oc¢la — Opla = k is just the trace on the k-algebra f,O¢]q.

Consider the mapping B : f,O¢ ®o, f+Oc — Op induced by Tr(f; -
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f2). Then there is an open dense subset U of C such that B|y is non-
degenerate; i.e., B[y defines an isomorphism fiOcl|v — (faOcly)". Let
d be a point of U. Then Tr|s : fiOcls @ fuOcla — k is non-degenerate.
This means that Tr(hy - hy) # 0 for given hy # 0 in f,Oc¢|q for some hs.
Therefore the ring foO¢|s has no nilpotents but f,O¢ly = O¢ls-14 =

& Oclecc. Therefore each e, = 1. Therefore f is unramified over U.
cef~1d

Ezercise 7.6.1. I h € f.Ocq, then Te(f}(d)= 2 f(c) when d is
cg f=1(d)
in U.

We can use calculus to study our separable morphism f. By the
previous discussion we know that if 7 is a parameter at a point d of U
then f*r is a parameter at each point of f~'d. Thus f*(dr) = d(f*)
is non-zero. Therefore f* : §p -+ {l¢ is non-zero. Consider the induced
exact sequence 0 — f*Qlp — Q¢ — f¢yp —+ 0 which defines an O¢-
module Q¢/p. By construction ¢/p is torsional as Q¢ypls-1y = 0.

Lemma 7.6.2,

(@) We have an isomorphism f*Qp(div Q¢/p) = Q-

(0) Let div Q¢yp = 2°n. < c. Then ne > ec — 1 with cquakity if
char kle..

Proof. (a)isobvious. For (b) let ¢ be a point of C. Let 7 be a parameter
at f(c). Then f*r = v-o® where o is a parameter at ¢ and v is a unit at
c. Thus f*dr = 0%dv + e,o°=~'vdo. Thus f*dr vanishes at ¢ to order
at least e, —1 and has exactly this order if char kle.. On the other hand
this order = n.. a

If char k)e. then c is called a fame (good!) ramification point of f.

Next we consider the purely inseparable case. Let p be the character-
istic. Let g == p™ for some n > 1. Given I} we can construct a morphism
Fy : D — D which is purely inseparable of degree g. Consider the g-th
power homomorphism k(D) «s k(D). We may identify this extension
with k(D) < k(D)V/9. Let F, : D, — D be the normalization of D in
k(D)'/9, Then we have

Lemma 7.6.3.

(a) F, has degree q.

(b) F, is a morphism and the sheaf of rings Fys(Op,) is isomorphic
to Op by the g-power mapping.
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(¢) Any purely inseparable morphism C — D of degree ¢ is isomorphic
fo Fy.

Proof. We begin with (b). Let d be a point of D and d’ be a point of D,
such that Fy;(d") = d. Then Opg = K(D)NOp_ 4. As Oy, isintegrally
closed Op /q 3 C Op, 4 but Og% is 2 maximal proper subring of k(D)/9.
So Op, e = l/ . As d is determined by its local ring, d' is uniquely
determined by d Therefore F, is bijective and takes closed subsets to
closed subsets. Hence F), is a homeomorphism. Also we have shown that
Fpe(Op,) = quq. This proves (b). For (a) let 7 be a parameter at d;
then 7!/7 is a parameter at d' on D,. Thus F;}(d) = ¢d’ and hence F,
has degree q.

For (c¢) k(D) C ¥(C is purely inseparable of degree ¢. Thus k(C)? C
k(D). So k(D)7 D k(C) and they have the same degree over k(D).
Hence they are equal. O

7.7 Principal parts and the Cousin problem

Let F be a locally free coherent sheaf on a smooth curve E. Let ¢ be
a point of C. Then the Ogc-module Rat(F)/F; is called the group
of principal paris at c of rational sections of F. We will denote it by
Prin (7). We want to define a sheaf Prin(F) of principal parts. For any
open subset U of C let Prin(F)(U) = @ Prin,(F) where restriction

to V C U forgets coordinates outside-of V

Lemma 7.7.1. We have an ezact scquence of sheaves
0 — F — Rat(F)IPrin(F) — 0
where Rat(F) and Prin(F) ere flabby quasi-coherent sheaves.

Proof. We need to define the homomorphism Rat(.’F’)(U)a-S-?)

Prin(F)(U) where U is an open subset. Let f be a section of Rat(F)

over U. Then f €Rat(F). There is an open subset V' of U such that

f € F(V). Now a(U)f) = 3 (fu modulo F,). Thisis a finite sum
uelU

because fy € Fy if z is in V. As a(U) commutes with restriction « is
defined. Clearly Ker(a) = F. To see « is surjective we compute stalks
at a point c. Then «.: Rat(F) —Rat(F)/F, is the quotient homomor-
phism. Thus « is surjective. The rest is evident. O
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Taking global sections of the above exact sequence we get that
0 — [(C, F) — Rat(F) % Prin(F)

is exact where Prin(F) = @ Prin.F. The Cousin problem asks when a
ceC
is surjective,

Proposition 7.7.2.

(a) « is surfective if C is affine.

(b) IfC is complete and F = Q¢ then « is surjective if and only if C
is isomorphic to P,

Proof. (a) follows from Proposition 5.2.3. For (b) if & is surjective
we can find a rational function on € with a single simple pole. Thus
C = IP* by Exercise 7.5.6. Conversely if C = IP! let p € Prin(0Ox). By
(a) for A' we may find a rational function f such that s = p ~ a(f) is
zero except at oo, It suffices to show that s is in the image of @. Now

s= 3 at' modulo Opr o. Sos=a 3 ait!) a
1<ign 1<ign

Cok(a) is an important global invariant of the sheaf 7. We will see
that it is the cohomology group H*(C, F).

We will call the sheaf F ordinary if « is surjective; i.e., the Cousin
problem for F has a positive solution.

We will need a criterion for the sheaf F to be ordinary.

Lemma 7.7.3. F is ordinary if and only if, for all effective divisors
D and all points ¢ of C, dimI'(C, F(D + ¢))/T(C, F(D)) = rank F.

Proof. Let E be an effective divisor. Then F(E)/F is isomorphic
to a (deg Exrank F) dimensional subspace of Prin(F). The image of
o intersected with this subspace is isomorphic to I'(C, F(E))/T(C, F).
Thus F is ordinary iff dim I'(C, F(E))/T'(C, F)) = deg Exrank F for
all E's, i.e. each time that we add a point ¢ to E dim I{C, F(E +
c))/T(C,F(E)) = rank F. 0O
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Cohomology and the
Riemann—Roch theorem

8.1 The definition of cohomology

Let F be an abelian sheaf on a topological space X. Recall that we
have the exact sequences 0 — F — D(F) — D(F)/F — 0. We may
iterate this construction as follows: Let C9(F) = F, D*(F) = D(C'(F))
and 0 — C*F) — D*(F) — C**1(F) = 0 be the canonical quotient se-
quence. Putting these short exact sequences together we get a resolution
F — DF) — DYF) — ... of F by the complex D*(F). The sheaves
D¥(F) are flabby by construction. And the construction is functorial in
F.
We get a complex I'( X, D*F) by taking global sections. The i-hom-
ology group of this complex is the i-th cohomology group HY(X,F).
Clearly H'(X,-) is an additive functor. We have a natural mapping
(X, F) — HY(X, F), which is easily seen to be an isomorphism.

A general problem is to compute these cohomology groups because
the definition is not very enlightening. This generalizes the problem of
computing the space I'(X, F) of global sections of . In this section we
will develop some general methods to approach this calculation.

Let 0 — F;, —+ F — F3 — 0 be a short exact sequence of abelian
sheaves on X. Then we have an exact sequence of complexes of sheaves

0— D*(.?-"l) — D*(F) = D*(F) = 0.
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As these sheaves are all labby we have an exact sequence of complexes
of groups
0 — (X, D*(Fy)) — I(X, D*(F)) — T(X, D*(F3)) — 0.
By the usual snake lemma we have a long exact sequence of cohomology
groups,
0 HY(X, Fy) —» HY (X, F2) - HO(X, F) 5

HY X, F) = HY(X, Fy) = HX, F) S HY (X, Fy) = ...
This is the most important property of cohomology.

Lemma 8.1.1. If F is flabby, then H{(X,F) =0 for i > 0.

Proof. We know that D{(F)/F is flabby by Lemma 4.3.2. Furthermore,
the sequence 0 — I'(X,F) — (X, D(F)) - X, D(F)/F) — 0 is ex-
act. Repeating this idea we see that the whole complex 0 — I'(X, F) —
(X, D*F) is exact. Hence HY(X,F) =0 for i > 0. a

The next result is a general resolution principle.

Lemma 8.1.2. Let0 — F — F° — F* — ... be a resolution of F
by sheaves F*' such that HI(X,F) =0 for all § > 0 and all i. Then
HE(X, F) is naturally isomorphic o the i-homology group of the complex

DX, F) - (X, F) = ... .

Proof. Consider the short exact sequence
0o F—=F" g o0
and the resolution 0 - G — F' - F2....

By left exactness of I'(X,-) the statement is trivial when ¢ = 0. If
i =1 then

X, F) - T(X,0) - H(X,F)—=0
is exact and

0 — I'(X,0) - T(X, F') — (X, F%)
is exact.

Thus H!(X,F) ~ first homology group of I'(X, F*). If i > 1 then
H“'I(X,g)-iH‘-(X, 0) is an isomorphism and by induction Hi"(X,§)
is the (i — 1)-homology of the complex I'(X, F') — I'(X,F%) — ...
which is the ¢-homology group of the complex I'(X, 7*). Thus the lemma
follows. O
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Lemma 8.1.3. Let (F) be o direct system of abelian sheaves on ¢
noetherian fopological space X. Then we have a naefural isomorphism

limit H3(X, F;) S Hi (X, imit F;).

Proof. We have the resolution 0 — limit F; — limit D*(F;). By

— —_
Corollary 4.4.4 each limit DY(F;) is flabby. So by Lemma 8.1.1 the
hypothesis of Lemma 8.1.2 is satisfied. Thus H(X, limit D*(R)) = j-
homology of I'(X, limit D*(F;)). By Lemma 4.4.3 this is the j-homology
of limit (I'(X,D*(F)) = limit of the j-homology of I'(X,D*(F)) =
limit HY (X, 7). O
3

8.2 Cohomology of affines

We begin with a local vanishing principle. Recall if U is an open subset
of a topological space X, and F is a sheaf on X, we have defined in
Section 5.2. a sheaf yF and a mapping F — . Clearly yF is flabby.

Proposition 8.2.1. Let V be a basis of open subsels closed under finite
intersection of @ topological space X. Let F be an abelian sheaf on X.
Assume that H(V, F) is zero for 0 < j <1 and all V in V. For any
element 0 in H'(X,F), we may find an open covering X = |JW, by
members W, of V such that the image of ¢ in HY(X, w,F) is zero for
each .

Proof. Let i = 1. We have an exact commutative diagram,

0— F — D(Fy— D(F)/F 0
Muthématiquss

flechercha

A

iy 17 \@E‘
iy 53

~ I VERSITAIRE 2V

O—wF —wDF)>wD(F)/wF—0

The cohomology class ¢ in H'(X, F) is represented by a section T of
D(F)/F over X. As the first row is exact and V is a basis, we may
find a covering X = | JW, by members W, of V such that 7|y, lifts
to a section of D(F) over W,. Therefore, for any «, the image of 7 in
(X, w (D(F))/ w_F) lifts to a section of w, D(F) over X. Hence, the
image of ¢ in H'(X, w, F) must be zero.

Assume that i > 1. Let W be a member of F. I claim that
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(e) there is a commutative exact diagram,

0— F——D(F)—= D(F)/F—0

R

0——wF—wD(F)*w(D(F)/F)~0

(b) the sheaf D(F)/F satisfies the assumption of the lemma with ¢
replaced by ¢ ~ 1.

First, I will show how the claim implies the lemma. As D(F) and

w D(F) are flabby, we have isomorphisms in the cornmutative diagram

H=(X, D(F)/F)—"— HY(X, F)

H=Y(X, w(D(F)/F)) —— H' (X, wF)

asi > 1. Therefore, our proposition follows from the claim by induction
on f.

To prove the claim, let V' be any member of V. By our assumption
and Lemma 4.3.3, we have a short exact sequence,

0—— D(W NV, F)— (W NV, D(F))— (W N V,D(F)/F)—~ 0

l | |

NV, wF) r(v,wD(F))  T(V,w(D(F)/F))

Thus, as V is a basis and ¢ > 1, the bottom line in claim (a) is
exact (this was the only point in (a) at issue). Furthermore, we have
isomorphisms, H¥(V,D(F)/F) = HI*Y(V,F) for j > 0. Hence part (b)
follows from our assumption on F. 0

We now are prepared for

Theorem 8.2.2. (Serre) Let F be a quasi-coherent sheaf on an affine
variety X. Then Hi(X,F) =0 for alli > 0.

Proof. We will prove the theorem by induction on i. Consider the
basis {D(f)} of X where f is a regular function. Each member of
this basis is affine and closed under finite intersection. Thus we may
apply Proposition 8.2.1. Given « in Hi(X, F) we may find a finite open
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covering Uy, ..., Uz by basis element such that o lies in H*(X, Fy,) for
each 5.

Consider the exact sequence
0-—+.F~+®UJ,}'-—>Q-—+O

of quasi-coherent sheaves. Then by the long exact sequence & = §(8) for
some § in H'~'(X,G). If i > 1,by induction 3 is zero and, hence, o is
zero, If i = 1, § = 0 because I'(X,-) is exact for quasi-coherent sheaves
on an affine. Thus & = 0 here also. 0

A useful form of this theorem is

Corollary 8.2.3. Let f: X — Y be an affine morphism of varieties.
Let F be e gquasi-coherent Ox-module. Then for all i we have ¢ netural
somorphism

HY(X,F)3 H'(Y, fF).

Proof. Let F — F™* be a flabby resolution of F. Then for all open affine
subvarieties V of Y, 0 — I(f~!'V, F) — I'(f~!V, F*) is exact because
f~1V is affine. Hence f,F — f,F* is a flabby resolution of f, . Thus

H(Y, foF) = i-homology group of I'(Y, £, F*)
= i-homology group of T'(X, F*)
= H(X,F).

Thus affine morphisms don’t change cohomology groups.

8.3 Higher direct images

Let f: X — Y be a continuous mapping of topological spaces. Let F be
an abelian sheaf on X. By definition R fu F is the ¢-homology sheaf of
the complex f.(D*(F)). As fi is left exact, fu F = R®f,F. One way to
compute R* f+F is to note that it is the sheaf associated to the presheaf
V — Hi(f~'V, F) for any open subset V of Y.

If0 — Fi — F» — F3 — 0 is an exact sequence of abelian sheaves on
X, then we have a long exact sequence

0 — RUAF — RO fu Fp — R fuFals
le*fl -t le*fg — le*faisz*ﬁ-—» N
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in the same way as cohomology groups. If Y is a point, R f, F(point) =
Hi{(X,F). It is very convenient to have higher direct images.
We may restate Serre’s theorem as

Lemma 8.3.1, Iff: X =Y is an affine morphism of varieties and
F is @ quasi-coherent Ox-module then R f,F =0 for i > 0.

Proof. Same as the proof of the last corollary. |
‘We will break some new ground with

Proposition 8.3.2. Let f: X — Y be a morphism of varieties and
let F be a quasi-coherent Ox-module. Then for all i

(¢) Rf.F is a quasi-coherent Oy -module, and
(b) for each affine open subset V of Y, Hi(f~'V, F) = (R* f.F)|v.

Proof As (b) implies (a), we will prove (b). We may assume that ¥ is
affine. We have the mapping Hi(X,F) — I'(Y,R!f,F). Thus we have
an Oy-homomorphism (H(X, F))” — Rif,F. We want to show that
this is an isomorphism. We need to check that it is an isomorphism of
stalks at any point ¥ of ¥ i.e. H‘(X,f')n, —t y_n_u'_t)H’-(f_lV,f) where
y = V open in Y is an isomorphism where n, is the ideal of y in k[Y].
To do this it is enough to see that H(X,F)y — H'(f~*(D(g)), F)
is an isomorphism for all ¢ in k[Y]. Now the inclusion f~'(D(g)) =
D(f*g) C X is affine. Thus H'(f~'(D(9)), F) = H'(X, p(srg)F) but F
is quasi-coherent. So hm.lt(f*g),.}'= p(srg)F- Thus HY( X, p(egy F) =

hmlt(f*g),,H (X, F) = H(X, Fgy so () is true. a
Thus direct images and cohomology are equivalent languages. We will
compute a direct image in the simplest possible situation.

Lemma 8.3.3. Let X aend YV be fwo verieties. Let F be @ quasi-
coherent sheaf on Y. Then for all i we have an tsomorphism Ox @y
HiY, F)SRixx+(xt F).

This result says that the variational cohomology of a constant family
of sheaves is constant.

Proof. The arrow is just given by multiplication and the pull-back
mapping HY(Y,F) = H{(X x Y, 75 F) = I(X, Riwx+ (73 F)). Thus we
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may check that it is an isomorphism locally on X. So we may assume
that X is affine. Then by Proposition 8.3.2 we see that the obvious

mapping
K X] @ Hi(Y, F) — H(X x Y,73F)
is an isomorphism. As X is affine, 7y is an affine morphism. Thus
HY(X x Y, 74 F) = H{(Y, ry«1} F)

but Ty.7y F = k[X] @ F. Thus as Y is noetherian H(Y,mys7d F) =
H'(Y,k[X]| @ F) = k[X] ®r H'(Y, F). 0

8.4 Beginning the study of the cohomology of curves

Let F be a locally free coherent sheaf on a smooth curve C. We have a
flabby resolution
0 — F — Rat(F) — Prin(F) — 0

by Section 7.7 Thus H(C,F) = 0if { > 1 and we have an exact
sequence

0 — H%C, F) — Rat(F) — Prin(F) — H(C,F) = 0.
Thus H*(C, F) measures the obstruction to solving the Cousin problem.
Note if § is a torsional coherent sheaf then H(C,G) = 0if i > 0 because
G is flabby. Thus HY(C, F) = 0 if and only if F is ordinary.

In this section we will eventually prove

Theorem 8.4.1. Assume that C is complete.
(a) The cohomology groups HY(C,F) and HYC,F) are finite dimen-

sional k-vector-spaces.
(0) dimHY(C,F)— dim; H'(C,F) =deg(det F) + (rank F)(1 —~ g)
where g = dim H'(C, O¢) is the genus of C.
The expression dim;H%(C,F)—dim;H'(C,F) is called the Euler-
characteristic of F and is denoted by x(F).

Step 1. We reduce to the case where F is invertible. If F has rank
> 1 then we have an exact sequence 0 - £ — F -+ G — 0 where L is
invertible and G is locally free of rank = rank F — 1. Thus by induction
we know the theorem for £ and G. Consider the long exact sequence

0 — H%(C, £) — HC,F) — HY(C,G) —
HY(C, L) — HY(C, F) - HC,G) - 0.
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Thus (&) for £ and G implies (a) for 7 and
X(F) = x(£) + x(9)
= deg £ + (1 — g) + deg(det G) + (rank F — 1)(1 — g)
= deg(£ ® det G) 4 (rank F)(1 —g)
= deg(det F) + (rank F)(1 — g).
Hence (b) is true for F if it is true for £ and G.

Step 2. Tt suffices to find one invertible sheaf £ such that H'(C, L) is
finite dimensional. Recall that we know that H®(C, M) is finite dimen-
sional for any invertible sheaf M. Let ¢ be a point of C.

We have an exact sequence

0 — M — M(c) = M(c)|, — 0.
Thus we have a long exact sequence
0 — HYC, M) — H°(C, M(c)) = H(C, M(c)|c) —
HYC, M) = HY{C, M(e)) =0
where H%(C, M(c)|c) is one dimensional.

Thus H'(C, M(c)) is finite dimensional iff H(C, M) is and this case
x(M(c)) = x(M) + 1.

Now any M has the form £(}"¢; — >-d;). Thus if £ has finite H*
then so does M and x(M) = x(L)+deg(3 e — 2. d;). Thus we may
assume that £ = O¢. Then we get if M = Og(D),

x(M) = deg(D) + x(Oc)
= deg M + dim I'(C, O¢) — dim H(C, O¢)
=deg M41-—g.
Thus (e) and (b) would be true for formal reasons if there existed one
invertible £ with finite H’,
Consider where M is a locally free coherent sheaf on C.

Lemma 8.4.2. IfI(C,Qc®@ M")=0, HY{(C,M)=0.

This will solve our problem because if deg £ >deg §2¢ then H(C, £) =
0 because I'(C, ¢ ®oc £871) = 0 because deg Q¢ @ L&~! < 0 by
Lemma 7.5.5(b).

Corollary 8.4.3. If M is an invertible sheaf of degree > deg Q¢ then
HY{(C,M) =0.

The proof of the lemma is important because the method will even-
tually prove the Riemann-Roch theorem.
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Proof of Lemma 8.4.2. Let F = M(D) for some effective divisor D,
Then T'(C, Qe @ F*) =T(C, (Rc @M ) —D)) CT(C,Qc @M™) =01is
zero.

Let ¢ be a point of C. We have the exact sequence 0 -+ F —
F(c) = F(c)|e — 0. Then we have the differential é. : H*(C, F(c)|.) —

HY(C, 7).

Step 1. 6 is zero for all e,

The idea of the proof is to see how §, varieties with ¢ globaily in C.
Consider the exact sequence

0= T} F < 7{F(A) — 7fF(A)|a — 0
on the product € x C. Then taking wy« we have a differential
§: 7!'2*(71':}-(&)[&) -+ Rlﬂ'g*ﬂ'f}- = Hl(f) Dk Oc.

Clearly the value §(c) of 6 at ¢ is just 6, because mp is an isomorphism of
A to C. Thus we want to show that § is zero. Now Ogxec(—A)a & Q¢.
Thus mae(TFF(A)a) is just F ®g, ™. Thus § : F @, Q&' —
HY(F)® Oc has dual 6™ : HY{(F)" @,0¢ — ¢ ® F~ which must be
zero because {1 @ F " has no non-zero sections, Thus 6§ = 0. This settles
Step 1.

Step 2. HY(C,M)=0.
By Lemma 7.7.3, to show that F is ordinary we need the following,.
By Step 1, we have an exact sequence

0 — I(C, F(D)) — T(C, F(D)c)) — I(C, F(D)(c)|.) — 0.
where D is an effective divisor, Then we are done because

dimy I'(C, F(D)(c)|.) = rank F.

Corollary 8.4.4.

(e) dimg I'(C,F) >deg(det F) + (rank F)(1—g)

() dimg HY(C,F) > —deg(det F) — (rank F)(1 —g).
Corollary 8.4.5. Any proper open subset U of C is affine.

Proof. Let ¢ be point not in U/. Then dim I'(C,O¢(nc)) > 1if n > 0.
Thus there is a non-constant regular function on U C C — {c}. Hence
U is affine by Lemma 7.3.2. d

8.5 The Riemann—Roch theorem
Now we know that H*(C, £) = 0 if deg £ >deg Q¢ and H(C, £) £ 0 if
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deg £ < 0. Thus there is an invertible sheaf M such that H'(C, M) # 0
and H'(C, M(c)) = 0 for all ¢ in C. Just take deg M to be maximum
such that H(C, M) # 0. Now

6c: T(C, M(c)|.) = HY(C, M) - H'(C, M(c)) =0
must be an isomorphism for each ¢ because I'(C, M(c))|.) is one dimen-
sional. Thus H'(C, M) is one dimensional and

MRS o HY(C, M)® Oc

is an isomorphism. Thus Q¢ =~ M and § : O¢ — HY(C,Qc) @ O¢ is
an isomorphism. Hence 6(1) = e ® 1 where e is a canonical generator of
the line H'(C, ¢). Thus we have proven

Lemma 8.5.1. H'(C,8¢) is canonically isomorphic to k.

Now let F be an arbitrary locally free coherent sheaf on C. If
o €Hom(F, Q¢) then we have a linear transformation,

HYC,a): H(C,F) — H(C,Qc) = k.
Thus we have a mapping

H': Hom(F,Q¢) — Homp(H(C, F), H(C,Qc)) = HY(C, F)".

Theorem 8.5.2. (Serre duality.) H' is en isomorphism between
Hom(F,Q¢) and H'(C,F)".

Proof. The proof relies on the following

Lemma 8.5.3. Assume that we have a commutative diagram
§: 0c®0. 08 — H'(C,0%)R:0c

a®l A1
§: FRocQE™1 — HYC,F)@r0Oc

where « € Hom(F,Q¢) and X : HYC,F) — HYC,Q¢) is ¢ linear
transformation. Then o determines X and conversely.

We will first see how to prove the theorem. Given & € Hom(F, Q¢)
take A = H'(C,a). Then we have a commutative diagram by function-
ality of 6. Then the lemma implies that « is determined by A. Hence H?
is injective. To show that H' is surjective, take X in Homy(H*(C,F) —
HY(C,8¢)). As the top arrow is an isomorphism we may find a such
that the diagram commutes., Now we have two commutative diagrams
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(@, A) and (o, H'(a)). Thus the lemma implies that A = H'(a). So H!
is surjective.

Proof of Lemmea 8.5.9. First we will do, “X determines a”, This is
trivial as the top arrow is injective.
Next we do, “a determines )”. By the above diagram a deter-

mines ) 3° imé|.. We need to see that the imé|. span H!(C,F).
ceC
To do this it is enough to find distinct points ¢y,..., ¢, on C such that

HYC, (3 ¢;)) = 0. By Lemma 8.4.2 this will follow if

T(CQRe®F (- ) =0.
Now I'(C, ¢ ® F") is a finite dimensional vector space. If this space is
not zero, let 3 be a non-zero section of ¢ ® F". Take ¢; to be a point

in the dense open subset where 3{c;) # 0. Then I'(C, Q¢ @ F"(—¢1)) is
a smaller space. We just continue the same procedure until I'(C, Q¢ ®

F(=Le))=0. O
Now we come to the gem.

Theorem 8.5.4. (Weil-Riemann—Roch.) IfF is a locally free co-
herent sheaf on a smooth complete curve C, then

dim; I(C, F) — dimy Hom(F, Q¢) = deg(det F) 4 (rank F)(1 — g)
where g is the genus of C.

Proof. Just combine Theorem 8§.5.2 and Theorem 8.4.1. a

8.6 First applications of the Riemann—Roch theorem

Let C be a smooth complete curve of genus g.

Lemma 8.6.1.

(¢) deg Q¢ =29—2and
(3) dim INC,Q¢c) = g.

Proof. By Theorem 8.5.2, T(C,Q¢) = Hom(O¢, Q¢) is dual to the
g dimensional space H!(C,O¢g). Thus (b) is true. As HYC,Q¢) =
k, x(Q¢) = g— 1 = deg(Q¢) + 1— g by Theorem 8.4.3. Thus (a) follows
by arithmetic. O

Let f: C — D be a separable morphism where I} is another smooth
complete curve .
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Proposition 8.6.2. (Riemann-Hurwitz)
2 genus(C') — 2 = (deg f)(2 genus(D) — 2) + deg(div Q¢;p).

Proof By Lemma 7.6.2(¢) we have an isomorphism Q¢ = f*Qp(div
Q¢yp). Thus deg Q¢ = (deg f)deg Qp-+deg(div Q¢yp). Thus Proposi-
tion 8,6.2 follows from Lemma 8.6.1. |

Assume now that char k # 2 and deg f = 2. Then f is a double cover.

Corollary 8.6.3. In this case genus(C) = genus(D) + 3 (number of
ramification points).

Proof. See Lemma 7.6.2 to compute div Q¢/p- O

Ezercise 8.6.4. Construct all double covers of IP! at least if char & # 2.
Compute their genus and show that any non-negative integer is the genus
of some curves.

These simple double covers of P! are the infamous hyperelliptic curves.

Ezercise 8.6.5. Show that the curve C is hyperelliptic iff there is an
invertible sheaf £ on C such that deg £ = 2 and dim I'(C, £) > 2. We
have inequality iff C' = IP*. Any curve of genus 2 is hyperelliptic.

In the purely inseparable case we have

Lemma 8.6.6. Assume that f: C — D is purely inseparable; then
genus(C) = genus(D).

Proof. genus(C) = dimyH}(C,O¢) = dim; H(D, f,0p) =
dim, H'(D, qu) = dimy H}(D,Op) = genus(D) by Lemma 7.6.3.
O

Let f: C — D be general.

Proposition 8.6.7. If genus(D) > 1 then genus(C) > genus(D) with
equality only if genus(D) = 1.

Proof. TFactor f as CLELD where g is purely inseparable and A
is separable. By Lemma 8.6.6 we may assume that f = h; i.e. f 1s
separable. Then we have by Proposition 8.6.2

2 genus(C) — 2 > (2 genus(D) —~ 2)(deg f)
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as div Q¢ p is effective. As deg f > 1 the result follows. 0

Corollary 8.6.8. (Liiroth) There is no non-constant morphism IP! —
D where genus(D) > 0.

Proof. Genus(IP') = 0. a

8.7 Residues and the trace homomorphism

Let w be arational differential on a smooth complete curve C. Let ¢ be
a point of C. We want to define the residue Res.(w) of w at ¢. Consider
the isomorphism r : H'(C,§l¢) — k. Resc(w) = r (cohomology class of
the principal part of w at c).

We want to show that Res.(w) is the Cauchy residue of w at ¢ by
checking

Theorem 8.7.1.

(¢) Res. Rat Qo — k is k-linear.

(b) Rese(w) =0 if w i3 reguler atec.

(¢) If 7 is o parameter af ¢, Res(Ldr) = 1 and Res(Zrdr) = 0 if
n>1L

Proof. (a) is evident and () follows because the principal part of w at
¢ is zero. It suffices to prove (c). We have to compute the isomorphism
o (T Rc(A)a) = Qe @ Q%“Eoc. Locally around ¢, dr is a basis
on {l¢. An-expression in max (7}2c(A)]a) near (c,c) has the form dr x
(m(ey) — m(c2))™! times a regular function f(c;,¢2) modulo functions
vanishing on the diagonal. This corresponds to (dr ® £) - f(c1,¢;) in
Qm&ﬂg'l which goes to f(e1,¢1)in O¢. Thus é(dr(x(c1)—n(c2))™!) =
e ® 1. Evaluation at ¢ then &, (cohomology class of 4 at c) goes to e.
The first point of (c) follows because r(e) = 1.

The rest of (¢) follows by continuity as in Cauchy’s original theo-
rem, Consider the sequence of sheaves 0 — 7 Q¢c(— 7] Qc(Ay2+... +
Al.ﬂ+1) — WTQC(ALQ + ...+ AI:"+1)I(312+---+¢-!.:1+1) —+ 0 on Ont1
where A; ; is the diagonal {(e1,...,¢nt1)lei = ¢j}.

Thus we have a connecting homomorphism

6 w2 e (T[Rc(Ay2 4 oo+ ALnds(Arpdt by mpr) —
Hl(cn17r2...n+1*7erC) = Hl(c, QC) Bk OC“ v
Let d = (¢2,...:¢n41) be a point of C" Then the value of é at d
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is the boundary &y, @ Qe(X i)y — HYC,8¢) of the sequence
0— Q¢ — Qo(Fes)| = Qe(Xei)lze, — 0.
Thus limit 5, = e and if the ¢;’s are distinct 6y, = Z&c...

Consider § of w=dn/ [] (x(z1)— w(z;)). Which is a basic section
2<€i<n+1

of miQc(Ay2+.. .+ Ay nt1). We assume that m(Cs),. . ,'TI'(C + V) are

distinct. Then 6(w) at (¢,...,¢) = cohomology classes of 4% at ¢ and

n

if the w(c, ) are distinct, 6{w) a.t (c1y-+ s Cat1) =2 cohomology classes of
i

HairT(c;) at Ci. Thus

dm dr .. dm
Resc;;(class of F) = (hm_tt E; cohomology class of m)

o dr
= limit Z Rese, (m)
= lll'mt ZH(W(CI)— 7|.'(C ))

[T
But the Lagrange identity gives

(I X — n(e;))

i%tj . . .
1= where X is an indeterminate.
Z I m(e:) — m(c5)
i
Taking the coefficient of X™~! we have

1
0= Znﬂ(c,)-w(c 3y

Thus R)esc-:—’,f =0 O

Ezercise 8.7.2. Let py,...,ps be principal parts of rational differen-
tials at points cj,...,¢q4. Then Ep,- is the principal part of a rational
i

differential iff 3° Res.,p; = 0.

Now we come to the trace mapping. Let f: C — I} be a non-constant
morphism between smooth complete curves. As f is affine,

HY(C,Q¢) 2 HY(D, £,.Q¢).
Thus our canonical isomorphism H I(C,QC)NR: gives a linear functional
X HY(D, f,¢) — k. By Theorem 8.5.2 we have a corresponding
O p-homomorphism
Tr: fulle — Qp.

We want to compute Tr locally when f is separable.

If f is separable we have an Op-homomorphism Tr':Rat(f,Q¢) —
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Rat Qp defined by Tr'(g- f~'w) =Tr(g)-w where g is a rational function
on C and w is a non-zero rational differential on D. One easily checks
that Tr' is well-defined by the formula.

Theorem 8.7.3. Rat(Tr)=Tr' if f is separable.

Proof. Tr is characterized by the property that for all points d in an
open subset U of D, Tr: f,Q¢(d)[s — 2 p(d)|4 maps the principal part
of 4= at ¢ to the principal part of %‘l at d where f(¢) = dand 7 is a
parameter at ¢ and ¢ is a parameter at d.

Let U be the open subset over which f is unramified. Then Tr'
takes fullc|v into Qp|y because if o is a parameter at a point v of
U, Tr'(g f*do) = Tr(g)do which is regular at u if ¢ is regular on f~'u.
To check that Tr' = Tr|, we need to compute when f is regular on f~1U.

(9 L2))u = Tr(g)lu %[ = ( ¥ 9(=)) %|u. This shows what
tEf~tu
we wanted. 0

Ezercise 8.7.4. Let F be a local free coherent sheaf on a smooth com-
plete curve C.

If P is a principal part for F, then P is the principal part of a rational
section of F if and only if

Res(< P,z >) = 0 for all z in I(C, F" ®o. c).
(This describes the obstruction to solving the Cousin problem of F.)



9

General cohomology

9.1 The cohomology of A™ — {0} and P"

Let n be a positive integer. We want to consider the cchomology
Hi(A"™ — {0}, Oan) of the punctured affine space A™. Fortunately this
cohomology is a k[A"] = k[Xy,...,X,]}-module under multiplication.
So we want to write an isomorphism of it with a concrete k[A"]-module.

Proposition 9.1.1.

(¢) H(A"— {0},04) =0 unless i =0 orn —1,

() ifn=1, H'(A" — {0},0n0) = k[ X1, XT],

() ifn > 1, HO(A® — {0}, Ons) = k[Xy,..., Xn] and H" (A" —
{0},0uas) = @ kXP'...XEn where the module structure is the

rEZ™
pis=~1

obvious one.

Proof. If n =1, A' -~ {0} = D(X,) is affine. Hence its higher coho-
mology groups are zero and its section is k[A'](x,). We will proceed by
induction on n. If n > 1 we have the exact sequence
0-— OAn_{ﬂ} “~+D(X,) OAﬂ_{g} — @ OAn-t_(g)Xin — 0.
Pns—1
As D(X,) is affine and the inclusion of D(X,) in A™ — {0} is affine
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the middle sheaf has no higher cohomology and its section is k[X],. ..,
X, X71]. Looking at the long exact sequence, if n = 2, we have

0 — HO(A? —{0},0m) = k[X1,..., X0, X' ]S
> kX, XX - HY (A% - {0},02) = 0
pes-1
is exact and H(A? — {0},042) = 0 if 1 > 2. The mapping ¢ erases
non-negative powers of X;. Thus the result is clear in this case, If n > 2
we have an exact sequence

0— HG(An —{0]:OA") - k[Xls- --f-XmX:l]_e’

3 KXiyo, Xnoa]XE s H'(A® — {0}, 0n0) = 0.
PnZ-1
As ¢ is surjective H'(A™ — {0},0an) = 0. Furthermore we have the
boundary if 1 > 1

. 5
H*H A — {0}, O0nn)x Y H(A™ — {0}, On-1) X5
-1
Thus the result follows by induction. O

Consider the projection 7 : A®+! — {0} — IP". This is affine. Further-
more, 7x Opnti—{o} = € Own(d). Thus H(P*,Op=(d)) is the term of
deZ

degree d in H(A™! — {0}, Opni1). We get

Corollary 9.1.2.

(¢) The cohomology H(IP™,Opa(d)) = 0 unless i =0 or n.

(b) HO(Pﬂ,OI’"(d)) = k[Xﬂv v ’Xﬂ]deg. d

() H™P,Op(d)) = k[X5',... . XX 0 XL,

(d) H™(P",Ops(—n — 1)) is one dimensional and the multiphication
HY(P*, Ops(d)) x H*(P", Ops(—n—1—d)) = H*(P",Opr(—n—
1)) is non-degenerate.

Proof.  The only new fact is (d). Here H"*(P",Opn(—n — 1)) =
kX3'... X! and the statement about the multiplication is obvious.

a

9.2 Cech cohomology and the Kiinneth formula

Let X be a topological space with open subsets, Uy,...,Us. If F is an
abelian sheaf we will define a complex

EHF) = B FEENF) = ...
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with an augmentation I'(X, F) — C*(F). By definition

C"F) = P TWi,n...NU;,,F)
io{---{in

and the differential §(a) = (Bio<...<ing, ) Where

Biv<oncings = Z (—1)jaio<...<i,-<...<i,.lU;nn...nU,-nM-
0<ign
As usual 67 = 0 and C*(X, F) is a complex.
The Cech cohomology H(X,F) is the i-th homology of the complex
C*(X,F).

Lemma 9.2.1. IfUp = X, then the complex
0 = I(X, F)=C*(F)

is homotopically trivial and hence ezact.

Proof We need to define an operator I'(X, FECY P F) — ...
such that

(*)6k + k6 = identity
where 6_; = ¢, ko((a:)) = o, and

kn(@is<p<in-) = (@ip << jn=1)
and k, is zero otherwise. One checks that (*) is true. O

Proposition 9.2.2. ILet F be a gquasi-coherent sheaf on a separated
variety X. Let Uy,...,U, be open affine subsets of X which cover X,
Then Hi(X, F)2H{(X,F) for olli.

Proof. We define a sheaf version of C*(X,F). For any open subset
V of X, let C*(F}V) = C*(V,F) with respect to the covering V n
Us,y...,V NU,. If we give obvious restrictions C*(F) is a complex of
sheaves and we have the augmentation # — C*F. By the resolution
principle it suffices to show that F — C*F is a resolution and, for each
i HI(X,C*F)=0for § > 0.

The first statement is local. So we may assume that X = some U,. In
this case the exactness follows from Lemma 9.2.1. To show the vanishing

note that Ci(F)= @ Usy 0.y, F. As X is separated, U, N...N
ky <o ki
Uy, is affine and its inclusion in X is affine. Thus the vanishing follows

as usual. ]
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Corollary 9.2.3. In the above sifuation
HI(X,F)=0if j>n.

We also get the Kinneth formula.

Proposition 9.2.4, Let Fy and F; be quasi-coherent sheqves on sep-

arated varieties Xy and Xz.
Then Hi(Xy xXp, 7{F1®@m3F) = @ HUY(X,, F1)@rH"(X;, F2).

iy fip=t

Proof. Let Ujg,...,Uy,;, and Uzg,...,Uz 4 be open affine coverings of
X; and X;. Then we have a resolution 7} ® 74§F, — 7iC*(F) @
73C*(F,). X we apply the resolution principle here as before we get
H*(X1,xXz,7{F @ 7}) & i-homology of C*(X1,71) ®x C*( Xz, F2).
Now the result follows from linear algebra. O

9.3 Cohomology of projective varieties

We want to prove

Theorem 9.3.1. Let F be e coherent sheaf on a projective variety X.
Then

(a) the cohomology groups H'(X,F) are finite dimensional k-vector-
spaces;
(b) There exists ny such that H{(X,F(n)) =0 ifi > 0 and n > ng.

Proof. We have a closed embedding X C P*. As closed embeddings
do not change cohomology we may assume that X = JP*. We will prove
the theorem by descending induction on i. If i > n there is no problem
because the cohomology is zero by Corollary 9.2.3. We may find an
exact sequence

0=C — @Opn(p)—pf—)()wherep'(o.
finite
Now G is coherent. Thus by Corollary 9.1.2 we have an isomorphism
HiP F)SHYP,G) if i < n and a surjection ) H*(P*, Op(p)) —
H*(P*,F) — 0. Thus if i = n we have finite dimensionality because
we know it for Op(p) by Corollary 9.1.2. If i < n the result follows by
induction from the case of G. This proves (a). For () do a descending
induction on i. As the theorem is true for Ops(m) by Corollary 9.1.2
we can just use the long exact sequences tensored by Op«(m). O
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2

Let F be a coherent sheaf on a projective varie_aty X. -The Euler
characteristic of F is the integer x(F) = 1 (—1)dimiH'(X,F). If

X is smooth, Hirzebruch gave a formula to c:)mpute x(F) in terms of
the geometry of X and F. This is called the Hirzebruch-Riemann-Roch
theorem. This result generalizes Theorem 8.5.4. Later it was generalized
by Grothendieck to a theorem about higher direct images [EGA]. This
interesting materjal is beyond the scope of this book.

Ezercise 9.8.2. Show that

(Opa(r)) = B!

nlr!

This argument was so easy we can generalize it and prove

Theorem 9.3.3. Let X be a projective variety end Y be @ variety. If
F i3 a coherent sheaf on X xY then

(¢) the higher direct images Rimy+F are coherent sheaves on Y,
() There exists ng such that Rimy+ F(n) =0 for i >0 and n > ng.

Proof. The result is local on Y. So we may assume that ¥ is affine.
Also let X = P". In this case we will later remark that we have an exact
sequence

(*) 0=G— @(wi’,,.(p)) — F — 0 as before.

finite
Then we need to know that Rimy«(wg.(p)) = H'(®", Or~(p)) ®x Oy
(Lemma 8.3.3) and Riry+(F) = (H'(X xY,F)J= 0if i > n (Corollary
9.23). The same argument applies to replace cohomology by direct
images. O

Thus we need to better understand coherent sheaves on P" x Y where
Y is affine. The whole theory of Section 5.4 generalizes. Consider the
graded ring k[A""!]| @, k[Y] = B. Then one constructs a quasi-coherent
sheaf M on IP* x Y for any graded B-module such that all quasi-coherent
sheaves are constructed this way and any coherent sheaves come from
a finitely generated graded B-module. Everything works as before. Let
= : A" — {0} XY — IP" xY be the projection. Then M is the degree
zero part, of 7.(M [An+1=(0}xY) where M is the quasi-coherent sheaf on
A"t x Y = Spec(B) associated to M. There are no new ideas in this
generalization.
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9.4 The direct images of fiat sheaves

Let f: X —+ Y be a morphism. Let F be a quasi-coherent sheaf on X
and G be a quasi-coherent sheaf on ¥. We have the sheaves

Rif*(f@ f*G) on Y.
In this section we will study how these sheaves depend on § in a special
situation.

The morphism f : X — Y will be assumed to have the form 7y :
Z xY — Y where Z is a projective variety. The sheaf F will be assumed
to be flat over Y (to be defined) and coherent. In this section we will
prove

Theorem 9.4.1. (Grothendieck). Any point of Y is contained in an
open neighborhood U such that we have o complex 0 — K* — K! —
oo = K™ = 0 where cach K* is a free Oy-module of finite rank and a
natural isomorphism R’ fo(FQ f*G|v) ~ i-homology sheaf of the complex
K* ®oy Glu-

In the next section we will explain some of the meaning of this theo-
rem.
We begin with the definition of F being flaf over Y. It means that
for all points z of X the stalk 7; is a flat Oy (;)module via f* :
Oy.f(z) =+ Ox,; where a module M over a ring A is flat if M @4 G is
an exact functor of A-modules G (and not just right exact).

Lemma 9.4.2, Let U and V be open affine subsets of X and ¥ such
that f(U) C V. If F is flat over YV, then T(U,F) is a flat k[V]-module.

Proof. Let G be k[V]-module. Then I'(U,F) ®v; G = (U, F ® f*G).
Thus this functor is the composition of the three exact functors ~, F ®
f*-and I'(U,-). Therefore it is exact. O

Next we begin the

Proof of Theorem 9.4.1, The result is local on ¥. So we may assume
that ¥ is affine. By the equivalence of cohomology and direct images
we need to compute H(X,F @ f*G) where G is k[Y}-module, As X
is separated we may use Cech cohomology. Let X = UpU...UU,
be an open affine cover of X. Then by Proposition 9.2.2 Hi(X, F @
F*G) = Hi(X, F® f*G). Let C*(F)® f*G be the Cech complex. Then
CHF)® f*G = C*(F) Qx[y] G by the obvious calculation I'(U;, N...N
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Uy, F® f*G) =T(Ui, N...NT;;, F) @xiv) G. Thus HI(X,F @ f*G) is
the i~homology group of the complex C*(F) Quy} G.

We would be done if C*(F) were a complex of free k[Y]-modules of
finite rank but this is not the case. We know that C¥(F) is k[Y]-flat
and the cohomology of C*(F) consists of k[Y]-modules of finite type by
Theorem 9.3.3(a).

Lemma 9.4.3. There exist a complez0 - L' S L' .., - L" 50
of k[Y}-modules of finite type where L},..., L™ are free and o homomor-
phism 1) : L* = C*(F) which induces an isomorphism on cohomology.

Proof. We want to construct the L! by descending induction so that we
have a map of complexes

0 — I Li+l e L* —0

o

CYF)—CHF)— CYF)  ...C™F)—0

inducing an isomorphism on cohomology of level > i and a surjection
on level i. Thus if i — 1 > 0 we can easily find L*~! because H(C,F)
is a finite type k[¥]-module and kY] is noetherian. If i = 0 take L% =
Ker(Ker L! — HY(X,F)) ® H°(X,F). This maps to L by the first
projection and to C®(F) by the second. Thus we have solved the prob-
lem. a

To prove the theorem we want to take K* = L*. To proceed we need
to prove

(¢) K is locally free (then we can localize further to make K free)
and

() 1 ®uy) G induces an isomorphism on homology for all modules G.

The idea s to consider the mapping cone of 3. This is a complex
C*(f) together with an exact sequence 0 — L*~1 — C*(f) = L — 0 of
complexes. Thus we have a long sequence of homologies

i—=17F T 1 & 1 Fa
() = H (L) - H(CH() » BEIHTH(EF) ...
By definition
Ci{H=C"YFRelL

and

(e, B) = (8 e + (=1)"4(B), 6(8)).
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One of these gives a complex and the obvious mapping gives the exact
sequence and * holds by computing the snake homomorphism explicitly.

On (*) by construction the £ are all isomorphisms so C*( f) is exact.
Now we have a finite exact sequence

0-L'=C" —100(..7:)@131 —

where everything except L° is k[Y]-flat. L° is a flat £[¥]-module.

Therefore C*(f) ®4jy) G 1s exact for any kfY]-module G. Therefore
by +® G, H(L* @y} G) — H{(C*(F) @[y} G) is an isomorphism for
all . This proves (b).

For (&) we just need to apply

Lemma 9.4.4. IfL is o flat k[Y]-module of finite type then L is locally
free.

Proof. Let y be point of Y. Let £y,...,£, be elements of L which give a
basis of L|,. Then £y,...,£, span the coherent sheaf L in a neighborhood
V of y. Thus we have an exact sequence 0 = G — DOy — Ly —
0 where G is coherent. As L]y is flat, Tor!(Z,0p) = 0 — ¢, —
b Oyl ﬂ.ﬁ[u — 0is exact. By construction v is an isomorphism. Thus
G|y so G is zero in a neighborhood of y. Hence L is locally free. ]

9,5 Families of cohomology groups

We continue with the assumption of the last section.
Let y be a point of V. Let X, = f~'(y) and F, = F|x,. We want to
study how the cohomology of F, changes as we vary y.

Proposition 9.5.1.

(e) The Buler characteristic x(Fy) is a locally constant function of y.
(8) For allidimy H(X, F,) is an upper-semicontinuous function of y.

Proof. The key remark is that F[, = F ® f*Oy,y. This makes the
connection with the material of the last section. This proposition is local
on ¢. So by Theorem 9.4.1 we may assume that we have the complex

0o K° S K o . s Ky =0

of free Oy-modules of finite rank such that the i~homology of K*[, is
= H'(Xy,Fy) for all y in Y. Here we identify H*(X,, F,) with the sky-
scraper sheaf R fi(Fy). By easy linear algebra x(F,) = > (-1) dim
Hi(X,, F,) = S(-1) dim H(K*,) = $(-1)' dim K, = $(-1)
rank K*. Thus () is true because x(F,) is constant.
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For (b) we have the exact sequence
0 — Im(a'[y) = Ker(ai[y) — HY(K*[y) =0
and Hi(K*ly) = Hi(xy’ Fy)-
Thus dim Hi(X,,F,) = dim K'|,—rank(ef|,)—rank(a’"?|,) where
dim K¥|, = rank K* is constant. Thus (b) follows because the rank
of a matrix of regular functions is lower-semicontinuous. O

One may ask to study this machinery in greater detail. The general
theme is to look at the natural mapping

i(y) : (R fuF)ly — H'(Xy, Fy)-
In general 1;(y) is not an isomorphism but in many interesting cases it
is. If there is an open subset V' of y such that the natural mapping
¥i(9): R fuFla ®G — Rf(F ® £'G)

is an isomorphism for all quasi-coherent sheaves G on U we will say that
R f.F commutes with base extension in U. This implies in particular
that 1i(y) is an isomorphism for all ¥ in U.

We begin our study with a result of Grauert which uses that our
schemes are reduced.

Proposition 9.5.2. If dim; H*(X,,F,) is a constant m then R f,.F
is locally free of rank m end commutes with base extension in Y.

Progf. The problem is local on ¥. We may returm to the situation
of the last proof. Thus rank(e*[,) and rank(a*~|,) are constants in y.
Thus o’ and a'~! are homomorphisms of constant rank.

Lemma 9.5.3. Leta:F — G be a homomorphism between locally free
coherent sheaves of constant rank. Then

(e) Im a is a locally free sheaf of constant rank which is a local direct
summand of G and

(b) Ker e is ¢ locally free sheaf of constant rank which is locally a direct
summand on F.

Proof. Consider H = Cok «. Then H|, = G|,/Im F|, forall y in Y.
Thus dimension of H|, is constant. Hence H is locally free of constant
rank. Thus the exact sequence 0 — Im o« = G — H — 0 is locally split.
So Im « is locally free of constant rank and a local direct summand of
G. The same reasoning applies to the exact sequence 0 —Ker a — F —
Im e — 0.
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Applying the lemma we have
0—+Kera'™ = K" S Ima'! o0,
0= Kera' !5 K> Imea =0
and
0—=Ima'™! - Kera*! 5 RfF =0
are all local split exact sequences of locally free sheaves of constant rank.
In particular B! f, F is locally free. As the sequences are locally split they
remain exact after tensoring with G. It follows that R'fi(F @ f*G) =~
R (F)RG;ie. Rif*f commutes with base extension.
‘We will need another more general result,

Proposition 9.5.4. Lety be a point of Y such that Hi(Xy,.?-'y) =0
fori>p. Then

() we may find a neighborhood U of y such that Proposition 9.4.1 is
true with n=p,

(0) Rif.F =0ifi > p and R f, F commutes with base extension in
U.

Proof. For (a) we have the complex 0 — K® — K! —» .. .an—:lK“ =0
which commutes with R*f.(F @ f*G) in a neighborhood V by Propo-
sition 9.5.1. If n < p there is no problem. Assume that n > p. Then
Cok(a™(y)) ~ H*(Xy,Fy) is zero. Replacing V by a smaller neigh-
borhood we may assume that a™~! is surjective. Thus we may write
o™ 1. =1 _, K™ as the projection of K™ ! onto a direct summand
K™, Let KX;) = K*~1/K,. Taking V still small we may assume that

K21 is free. Consider the complex K, :0 = K® — ... = K™% &

new
K™} — 0. We have a mapping 1 : K* — K}, which gives an iso-

new W,
morphism on cohomology. Hence by the mapping cone argument ¥ @ G
induces an isomorphism on cohomology for all G. This proves (a) by
induction on n.

For (b) R'f,F is the i-th homology of K* If i > p then K* is zero
in this degree. Then R'f,F = 0if i > p. Now R'f(F ® f*G) is
isomorphic to Cok(a?~! @ G) & Cok(a?~1)® G ~ RPfiF @ G. Thus
RP f.F commutes with base extension in U. O

There is another theorem of Grothendieck related to base extension.

Theorem 9.5.5. Therc is a coherent sheaf Q fogether with o natural
isomorphism g : Hom (Q,g);f*(}'@: F*G) for all quasi-coherent Oy-
modules G.
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Proof. By general nonsense @ is determined up to unique isomorphism.
If we construct local solutions to the problem they will automatically
patch together to give a global solution. Thus we may pass to the
(+]
situation of Theorem 9.4.1 where we have the complex 0 — K5 K!
such that Ker(a® ®G) ~ fu(G® F*F). Let @ =Cok(a® : K4 - K*),

Then we have an exact sequence

Hom(a®*, 1)

Hom(K,0) - Hom (K", G) «~—Hom(Q,G) —0

K'®@G -« K°®¢C

Thus Hom(Q,G) = Ker(e® @ ) & f.(F ® f*G) and this is clearly
natural in G. O

Ezercise 9.5.6. Assume that 1;(y) is surjective.

(¢) Rif.F commutes with base extension near y.
(b) R f.F is locally free near y iff ;1 (y) is surjective.

(Hint: choose £3,...,¢, in Ker &' such that &(y),...,¢.(y) are
a basis of Hi(X,,F,). Then take my,...,m, in K™ ! such that
o= my)y),. .., o8 (me ) (y), £1(y), - - -  €m(y) are a basis of Ker(a'(y)).
Then the obvious mapping ¥ : A = GO~ @ 0P — K gives an iso-
morphism between A and Ker(a') in a neighborhood of y and I'm(1)) is
locally a direct summand of K7.)
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Applications

10.1 Embedding in projective space
We begin with

Lemma 10.1.1. ILet X be a closed subvariety of Y x Z where Y and
Z are varietics and Z is projective. Let f: X — Y be the projection.
Then f is finite if for all points y in ¥ the set f=1(y) is finite.

Proof 'We need to prove that f is an affine morphism because f.Ox
is coherent by Theorem 9.3.3. Fix y. We need to find an open affine
neighborhood V such that f~1V is affine. We may assume that ¥ is
affine, Now we may assume that Z is P, Thus f~(y) = {y} x F where
F is finite subset of P*. We can find a hyperplane L = 0 not meeting
F. Then F C D(L)= A" So U =XnN(Y x D(L)) is a closed subset
of an affine variety ¥ x D(L). Thus U is affine. Let W = complement
of f(X —U). As Z is complete, W is open. By construction W is a
neighborhood of y and f'W C U. Let g be a regular function on ¥
such that ¥V = D(g) C W. Then V is affine and f7V = Dy(f*Q) is
affine. O

Proposition 10.1.2. Letoy,...,0n be sections of an invertible sheaf £
on a projective variety X. Let V be the linear span of the o; in I'(X, L).
Then the sections oy,...,0, define an embedding in P™ if
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(a) for each point z of X, there is a section v in V such that v(z) # 0,

(b) for each pair x # y of distinct points of  there is a section v in V
such that v(z) # 0 and v(y) =0,

(c) for each point of X the sections v in V such that v(z) = 0 have
the propertics that the dv|; span my/m2 @y L], where dv|, is the
image of v in m L/m2L =m./m? @ L|,.

Proof By Lemma 5.7.1, (¢) mmplies that (og(z),...,0.(z)) define a
morphism ¢ : X — P*. (b) means that the hyperplanes through g(z)

and g(y) are distinct. Thus ¢ isinjective. We can factor g : X -——]»‘X X
grap

P*__f P" as X ~ graph(g) and this is closed in X x PP*. By
projection
Lemma 10.1.1 ¢ is a finite morphism. To show that ¢ is an isomorphism
we need to check that Opn|g) — Ox|: is surjective for a point z
of X. This means that I'(X,Ox /(g*my(s)) is one dimensional. The
sheaf in question is supported by z and has stalk Ox,z/¢*m (). The
assumption (b) means that g*m(,) spans m./mZ2. Then by Nakayama's
lemma g*m ;) = mz. Thus the stalk is &. ]

Let C be a complete smooth curve. Let £ be an invertible sheaf on
C. Let 09,...,05 be a basis of I'(C,£). Then V = I'(C,£). We want
to know that we have a projective embedding of C.

Corollary 10.1.3. We have o projective embedding if I'(C,L(—D))
CT(C, L) has codimension 2 for all effective divisors D of degree 2.

Proof. Straightforward. a

Ezercise 10.1.4. I deg £ > 2 genus(C') + 1 then £ defines a projective
embedding,

Ezercise 10.1.5. Let genus (C) > 1,Q¢ defines a projective embedding
if genus(C) > 2 if C s not hyperelliptic.

10.2 Cohomological characterization of affine varieties
In this section we will prove a theorem of Serre.

Theorem 10.2.1. Let X be o variety. Then X is affine iff for each
coherent sheaf I of ideals we have HY(X,I) = 0.
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Proof. The “only if” part is a special case of Theorem 8.2.2. For the
“4f”, we have three steps.

Step 1. There are fy,..., fn in k[X] such that the D(f;) are affine and
cover X,

Step 2. There are a1,..., 8, in k[X] such that 1 =3 a;f:.

Step §. The finale.

For Step 1 as X is quasi-compact we need only show that each point
of y is contained in an affine D(f) for f in k[X]. Let U be an affine
neighborhood of z; we may find f such that z € D(f) C U. Thus we
want f to vanish on ¥ = X — U and not at z. In other words f is a
section of the ideal Iy of Y such that the image in Of;} is non-zero,
say 1. Consider the exact sequence 0 — I — Iy — O3 — 0. As
H'(X,I) =0 we can lift the section 1 of Oy} to such an f.

For Step 2 consider the homomorphism f: POP" — Ox sending
(a:) to 3 a,fi. As the D(f;) cover X, f is surjective and we want to lift
the section 1 to I'(X, & ©%"). Thus it is possible if H(X,Ker f) =0
but Ker(f) clearly has a coordinate filtration with coherent ideals as
composition factors. By the long exact sequence of cohomologies, we
have the required vanishing.

For Step 3 let g;1,...,9im; be elements of k[X] such that they and
% generate k[D(f;)].

Let B be the subring of k[X] to be generated by the f’s, ¢'s and ¢'s.
Then we have a morphism ¢ : X —Spec(B). By construction D(f;)
cover Spec(B) and ¢ is locally an isomorphism on the D(f;). Thus g is
an isomorphism. Hence X is affine. O

10.3 Computing the genus of a plane curve
and Bezout’s theorem

Let C be a smooth curve in P?, The degree of C = degree of an irre-
ducible homogeneous equation of C. Then Op:(—C) & Op: (— deg C).
Lemma 10.3.1. The genus g of C s E-:l%ﬂl where d = deg C.

Proof. We have an exact sequence
0— Op(—d) = Opz = Oc = 0.
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Then 1—g = x(Oc) = x(Op) — x(Op:(—d)) = 1 — x(Op:(—d)). By
Exercise 9.3.2 we have g = =2 22-'&"'1 . The result follows. O

If C is singular then x(O¢) = 1 — p, where p, is the arithmetic genus
of C. Thus even in the singular case the lemma computes p,. The
geometric genus p, of C is the genus of ¢ where C is the normalization
of Cin k(C).

Ezercise 10.9.2. p. —p, = 3, dimi(f.Op/O¢) which is a finite sum
ceC

where §: ¢ — C is the canonical mapping.

Let C and D be two distinct plane curves in P2, Then the intersection
CnND is a finite number of points. If p is a point of P? the iniersection
maudtiplicity I(C, D : p) of C and D at pis dimpOp: ,/(Zc,p + Ip,p.)

Proposition 10.3.3. (Bezout)

Z I(C,D:p)=deg C-deg D.
peP?

Proof, Clearly the sum is dim; (P2, Ocnp) = x(Ocnp) where

Ocnp = Op: /(Zc + Ip.)
As the equations f and ¢ of C and D are relatively prime we have an
exact sequence

0 — Op2(—deg f —deg g) — Op:(—deg f) + Opz(—deg g) —
Op2 = Ocnp — 0.

Thus x(Ocnp) = x(Op:) — x(Op:(—deg f)) — x(Op:(—deg g)) + x(Op:
(—deg f—deg ¢)). The result now follows from Exercise 9.3.2 by a simple
calculation. ]

We may give a more instructive proof that works when C is smooth
(it always works in general but we have not developed the degree of an
invertible sheaf on a singular curve). The proof is

dimj 1-\(]?2, OCnD) = X(Ocnp) = deg(oln(.D)]c) =
deg D deg(Op:(1)|¢) = (dim T'(lP?, Ocn)) deg D
where L is a line # C. Now exchanging C and L we get
dim;'(P?, Ognp) = dimT(P%, Opinr) deg C deg D

where L' and L are distinct Jines. The last step is dim I'(P?,Oprqr) =
dim,k[point] = 1.
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10.4 Elliptic curves

An elliptic curve E is a smooth complete curve of genus one. The sheaf
of differentials g is trivial because it has degree 2.1 — 2 = 0 and
I'(E,QEg) is one dimensional. By the Riemann-Roch theorem if £ is
an invertible sheaf of positive degree then dim; I'(E,L£) = deg £ and
HY(E, L) =0.

We will classify all invertible sheaves of degree one. Consider Pic; (E)
which is the set of isomorphism classes of invertible sheaves on E of
degree one.

Lemma 10.4.1. The mapping [ : E —Pic,(E) sending o point e of
E to the class of Og(e) is a bijection.

Proof. If £ has degree one, then £ has a non-zero section o. Thus
L ~ Og(D) where a corresponds to 1 and I} is an effective divisor of
degree one; i.e. a point e. Thus £ = Og(e). As « is unique up to a
constant, e determines £ and conversely. O

For the next proof we can explain better how to find e. Consider a as
a homomorphism O — £; then o": £&7! — O has the ideal Og(—e)
as image,

Lemma 10.4.2. Let L be an invertible sheaf on E x X where X s
a variety such that L; = L|gx: has degree one for each point z of X.
Then the mapping f: X — E sending z to [~ }(L;) is a morphism.

Proof L is flat over X. As HY(E,L;) = 0 for all z, the coherent
sheaf m.+L is locally free and commutes with base extension. Thus
7.+ L is invertible as H*(E, £.) is one dimensional. We have a natural
homomorphism & : 75(7ex L) — L. Consider the ideal I = image(& :

T(mee L) ® LI = Opxx).

Claim. Z = zerces(I) = {(z,e)|f(z) = e} and 7x : Z —+ X is an

isomorphism.

This of course will show that f is a morphism.

Let z be a point of X, Then 7 L], = I'(E,£;) & k. Thus a|gx; :
Og — £ is just the previous . Thus Z|gx: = Og(—e¢) where fe =
(L|z) so the first statement is clear. Now wx * Z — X is one-to-one
and E is projective. Thus, by Lemma 10.1,1, 7; : Z — X is finite but
Tex(Oz)|; = T(E,0.) = k. Thus 1,40z = Ox and hence 7x : Z —» X

is an isomorphism. i
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Now let O be a fixed point of E. Then if Picy(E) is the isomor-
phism class of invertible sheaves of degree zero then the mapping j;) :
E —Picy(E) which sends e to Og(e—0) is a bijection. Clearly Picy(E) is
a group under tensor product, thus E has a unique structure of abelian
groups such that _];J is an isomorphism. Thus 0 is the zero of this group
law. If e; and e; are points of E then e; sum ez is the point ez such
that Og(es — 0) ~ Og(ey +e2 —2-0). Thus ey = f_l Og(ey + ez —0).
If 2 1s a point of E, then minus ¢ = f where Og(f — 0) = Og(0 —¢),
thus f= [ (Og(2-0— e)). We will next show

Proposition 10.4.3. E is an a.lgebmz'c‘ group with this operation.

Proof. We need to show that sum: E x E — E and minus: E — E are
morphisms. By Lemma 10.4.2 we just need to give invertible sheaves on
E x (E x E) and on E x E such that these maps are the corresponding
morphisms f but this is easy. Consider Ogxgxe(A1,2+81,3—0XE X E)
where A;; = {(e1,€2,e3))|ei = €;} and OpxE(2-0 X E — A) these do
the trick. O

10.5 Locally free coherent sheaves on P!

We will prove a result which was last proved by Grothendieck,

Proposition 10.5.1. Let F be a locally free coherent sheaf on P,

Then F = & Opi(d;) for some integers dy < dp < ... < d, which are
1<i<r
unigquely determined by F.

Proof. Let us prove the uniqueness first. Let p be an integer. Let 7, =
image of (P!, F(—p)) @ Op(+p) in F. Then F, = B Op:(d;). So

1<igr
a;i2p

rank (F,/Fpi1) = number of d; = p. Thus F determines the d; up to
order.

As the proposition is the same for 7 and F(d), we may assume that
(P}, F) # 0 and (P!, F(—1)) = 0. Let @ # 0 be a section of F. Then
we have a corresponding inclusion Opr C F. The first point is that
F/Op: is locally free, For otherwise 7/Op: has torsion . Then the
inverse image of 7 in F is an invertible sheaf £ > Op:. If £ # Op: then
£ D Op1(1). Hence F(--1) has a non-zero section which is impossible.

Thus we have the exact sequence

(*) 0—-0Opp = F a2 F =0
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where F' is a locally free sheaf of one less rank than #’'. So by induction
we know the proposition for ' = € Op:(d;). Now I'(P!,F(~1)) =0
because we have the exact sequence

0=T(P', F(~1)) - I(B, 7' (~1))5H (B, Op(-1)) = 0.
Therefore d; < 0 for each 1.

We next want to prove the sequence (*) splits. Consider the dual
sequence,

0= F'= F = Op = 0.
By now F'"= € Op: (—d;) where d; < 0. Thus H}(P!, 7'") = 0. There-
fore we may lift the section 1 of Op: to a section of F. This gives a
section Opr — F of F"— Opr — 0. Thus the dual sequence splits so
(*) splits. i

10.6 Regularity in codimension one

Let X be a smooth separated irreducible variety and ¥ be a complete
variety. Let I/ be an open dense subset of X such that we have a
morphism f: U — Y. We will assume that U is taken to be a maximal
open subset such that the rational mapping f is regular.

Proposition 10.6.1. dmX —~U <dimX — 2.

Proof. We may assume that f(X) contains a dense open subset of V.
Let 7 : Z — Y be a Chow covering where Z is projective and = is
birational. We may factor f as X-5Z35Y where g is rational. Clearly
it suffices to prove the proposition for ¢. Thus we may assume that ¥’
is projective.

Let T be the closure of the graph of fin X xY. Thenn:I' = X
is birational. Let P = {p € I'|[dimpm~l7p > 1}. Then P is closed by
Proposition 6.4.5. Thus w(P) is a proper closed subset of X. Clearly
UCX—-n(P)=V.

Claim. U =X — n(P).

Here 7 : I' — V is finite by Lemma 10.1.1 where I = 7*V. Thus
T Or,; is a finite Ov,; module for all z in V. Thus 7.Op/ ; is integral
over Oy,; but Oy, is integrally closed as it is a UFD. Thus 7.Op/,, =
Ov. or m,Or = Oy. So w:I¥ — V is an isomorphism; i.e. f is regular
on V. This proves the clamm.
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We need to show that dim #{P) <dim X — 2. Now dim X = dim
I' >dim P = dim #(P) + 1. Thus we are done. 0

10.7 One dimensional algebraic groups

Let G be an algebraic group where G is a curve. We want to prove

Proposition 10.7.1. Either G is aen elliptic curve, or
Gz G, or G,,.

Proof. The sheaf of differentials is trivial. One lets T;’_l Qaig = Qo
where T, is translation by g. As this is clearly continuous in g, g is
trivial.

If G is complete, genus(G) = +deg(Q¢) + 1. Thus genus(G) = 1 and
hence G is elliptic.

Otherwise G is affine. Let & be the smooth completion of . Consider
the rational mapping & : G X G — @ given by multiplication.

Cleim. « is a morphism.

Let U be the maximal open subset where « is a morphism.

The complement of U is finite. Let (%, §) be one of the points of the
complement. Then a(h,§) = (h-5)- (87 §) forany Sin G. If 8 is
general then (A - 8)(81§) is a morphism extending a. As translation by
#71: G — G extends to a morphism G — G and (k- 8, f~'§)isin U
for general 3, o extends to a morphism everywhere.

Let X be a tangent vector of the identity of G. Thus o, (X & 0) gives
a vector field X on G which vanishes at the fixed points G — G. Thus
(G, ﬂ%‘l) is non-zero and has a section X which vanishes on G — G.
Therefore deg .Qg"l > 1. S0 2 genus(G) — 2 < —1. Thus genus(G) =0
and X vanishes twice at one point or once at two points. Therefore
G =P and G=A' or A' — {0}.

Consider the case G = A!. We put the identity at 0. Now the
multiplication m : A! x A! — Al is given by f(z,y) = f(z,y) where
f is a polynomial in two variables. For fixed z,y ~ f(z,y) : Al — Al
is an isomorphism. Thus f(z,y) = fi(z)y + f2(z) where fi(z) is never
zero in A'. Hence f(z,y) = Cy + f2(z). Exchanging z and y we have
f(z,4) = Cy + Dz + E for constants C,D,E. Now f(0,y) = y and
f(z,0) = z. Thus f(z,y) = z+y and G is G,.

Consider the case G = A' — {0}. We put the identity at 1. Now m
is gtven by f(z,y) where f is polynomial in z, z™! and y, ™. For fixed
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z, y = f(z,y) extends to an isomorphism A' — Al Thus f(z,y) =
f(x)y+ f2(z) where fi(z) is never zero on A! — {0}. Exchanging y and
z we have f(z,y) = Azy + Bz + Cy + D where Az + C is never zero on
A' — {0} and Ay + B is the same. Thus C =B =0. f(z,y) = Azy+ D
but f(1,¥) =y so f(z,y) = zy, and hence G is Gr,. O

‘We have shown that given any point 0 of an elliptic curve E, E is
an algebraic group with identity 0. We will next show that this group
structure is unique.

Lemma 10.7.2. If yy,uz : E x E — E are two algebreic group laws
with identity 0 then py = po.

Proof. An easy proof of this relies on Mumford’s rigidity.

Lemma 10.7.3. Let f: X XY — Z be o morphism where X 13
irreducible and complete, Z is separated and Y is irreducible. If there is
a point yo of Y such thet f(X X yo) is @ point, then f = gowy where g
i3 a morphism ¢: Y —= Z.

Proof. Let W be an affine neighborhood of f(X % yo). Then F =
my(X xY — f~'W) is a closed subset of ¥ as X is complete. By
construction ¥V = ¥ —F is an open neighborhood of 3. Let v be a point
of V. Then f takes the complete variety X X y to the affine W. Thus
F(X x y) = {g(y)} where g(y) is a point. We next note that g: V' — 2
is a morphism as (*) ¢(¥) = f(%o,y) for some fixed zo in X. AsY is
irreducible V is dense in ¥ and the formula (*) defines ¢ on all of y. We
must have g(y) = f(z,y) for all z and y. a

To prove the first lemma just note the identity is a morphism

(E,m1) — (B, p2)-
Consider the morphism 7 : E x E — E given by uz(e; x ez)(u2(e1)
pz2(e2)) . We want to prove m(e1,ez) = 0. Now (0, e2) = 0 = m(e1,0).
Thus apply the lemma 7(e;, ez) = g(ez) = 0. O

10.8 Correspondences

Let C and D be two smooth complete curves. A correspondence from C
to D is an invertible sheaf £ on C x D. For instanceif f:C - Disa
morphism then Ogxp(graph(f)) is a correspondence.
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A correspondence £ is trivial if it has the form 72 M @ THN where
M and N are invertible sheaves on C and D. Two correspondences £
and £; are called eguivalent if £, @ L2 is a trivial correspondence.

A correspondence £ has two degrees. By Proposition 9.5.1(a),
x(L|exp) is a constant in ¢. Let it be yp(L) and define degp(L) by
the equation

xp{L) = degp(L) + 1 — genus(D).

Thus deg(L.xp) =degp(L) for all ¢ in C. Reversing the roles of C and
D we have dege(L) and xe(£L) such that

xc(L) = deg (L) + 1 — genus(C) and deg(Leoxa) = deg(L) for all d.
The numerical measure of the non-triviality of a correspondence £ is

the number N(£) = —x(L) + xp(L)xp(L). By the Kinneth formula
N(L) = 0if £ is trivial but we will prove a much stronger fact.

Theorem 10.8.1.

(e) N(L) depends only on the correspondence class of L,
(b)) N(£)20,
(¢} N(L)=01ff L i3 triviel.

Proof. For (&) by symmetry it suffices to show that N(L) = N(L(—¢ x
D)) for all points c of C. We have an exact sequence
0= L(—cX D)=L = Lexp—0.
Thus x(£) = x(£(—c X% D)) + xp(£) as xc(£) = xc(L(—cx D)) +1
and xp(£) = xp(L(—c x D)). The result follows.
For (b) we may replace £ by a suitably chosen representative £’ of its
cotrespondence class.

Claim. We can choose L' such that degcl' = genus(C) — 1 and
I'(C,L'|exe) = 0 for one point € of D.

Clearly if we take £' = L(r(cp x D)) where cp is a point of C and
r = genus(C) — 1— dege(L) the first requirement is satisfled. Choose
e arbitrarily; then if I'(C, £L'[cxe) = 0 we are done. Otherwise replace
L' by L" = LYe1 x D — ¢z x D) for general points ¢; and ¢z of C.
Then dim; I'(C,L"|cxe) = dimg T(C,L'|cxe) — 1. In fact take ¢
not to be a base point of I'(L'|cx.) and a1 not to be a base point of
I'{c ® (L'oxe)® " (cz)) which is possible because xo(L') = 0. Thus
I'(C, £'|ox.) decreases under the change and we are done by induction.

We next prove
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Claim. Rimp«L' =0 unless i = 1in which caseit is a torsional coherent
sheaf and H¥(C x D,L') =0 unless i = 1 in which case it is isomorphic
to P(.D, RITFD*E').

We will first note how this implies (8). As N(L') = —x(£) 40 % =
—x(L") =dim H*(Cx D, L") wesee that N(L') > 0 and get a start on (c)
by noting that N(£') =0 iff Rirp«L' = 0 and consequently N(L£') =0
if £’ is trivial.

The first statement follows from base extension. As y(£|cx.) =0 we
have H¥(C,L|gx.) = 0 for all i. Therefore there is a neighborhood U
of e such that Rimp«L|y = 0 for all i. Thus 7p.L is zero because it
has no torsion and R'7mp+L is a torsional coherent sheaf. Furthermore
Rizp«L = 0 for i > 1 by base extension because H¥(C, L|cxa) = 0 for
¢ > 1and all d.

The second statement follows from the Leray spectral sequence which
we don’t have. So I will have to write the argument in detail. Let
L — D*L be the canonical flabby resolution of £. Then 7p« D*L is
a complex of flabby sheaves with only one homology sheaves Rimp«L
which is also flabby.

Now HY(C x D,L) = i-homology of I'(C x D, D*L)
= i-homology of I'(D, 7 p+ D*L).
Thus we need only apply

Lemma 10.8.2. If0— F% - F! — ... is a complex of sheaves on a
topological space X such that HY(X,F) =0 for all j and i > 0 and the
same for the homology sheaves H7 of the complex, then the i-homology
of (X, F*) is naturally isomorphic to T(X, HY).

Proof Break the complex up into short exact sequences 0 — Z' —
F'—= B! . 0and 0 = B' = Z' — H' — 0. By ascending induction
we prove that the higher cohomology of all these sheaves is zero. Hence
applying I'(X,~) to them is exact. The result follows. mj

For (¢) it remains to prove that £' is trivial if Rirps+L’ is zero for all
i. Let c be a point of C. Consider the exact sequence of sheaves

0 =L = L(cx D)= L cx D) exp — 0.

By the long exact sequence of direct images Tp+»L'(c x D) & mp+ (L' (e X
D)|cx D) where the last sheaf say A is invertible. Thus we have a
homomorphism M — 7p«L'(c x D) and its adjoint ¢ : Tp M — L'(e %
D) such that y|,xp * M — L'(c x D)|.x p is an isomorphism. Consider
the zero divisor Z of 1. Then Z is an effective divisor such that Znex D
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is empty. Therefore an irreducible divisor R in Z is mapped by 7¢ to
a closed subset of C which does not meet ¢. Thus the projection is a
point 7 and R = r x D. Therefore L'(¢c x D) a2 mh, M(5_ r; x D). Hence
L' is trivial. O

Next we will show

Proposition 10.8.3. N is a quadratic function on the group of corre-
spondences; i.e. < LN >=N(LO®N)— N(L)— N(N)— N(Ocxp) is
biadditive and N(L) = £ < L,L >.

This would be no problem if we knew the Riemann~Roch type theorem
which computes y(£) where £ is an invertible sheaf on a smooth surface.
I will give a direct proof.

Claim 1. L is equivalent to Ocxp(— Y R;) where the R; are disjoint
smooth curves.

Note E = ¢ x D4 C x d 1s ample on C x D for any c and d. (See
Exercises 5.7.4 and 10.1.4). Then £®™1 ~ L®~!Y(mE) which is very
ample. Thus we can take > R; to be a hyperplane section by Bertini’s
theorem.

Next we prove

Claim 2.
< LN >=— Edeg(;\flgi) +dego Ldegp N 4 dego N degp £.

Consider the exact sequence

0—’£®N—"OC><D®N—’@NIR.-—"O

O—iE—FOCxD—P@OR'.—)O.

We get

X(LQN)—x(N) = ZX(NIR.-)
and t

x(£) —x(Oexp) = E x(Or;)-
Thus ;

~x(L @ N) + x(N) + x(£) = x(Ocxp) = ZX(OR‘) — x(NMp;)

=~ 3 degWln,).
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Now
xc(L @ N) - xp(L® N) — xelL)xe(L) xp(L)
— x¢(M)xpWN) — xc(Ocxp)
=dego L degp N 4 dego Ndegp £
by a calculation. Thus the lemma follows.
The claim shows that < £,A > is additive in A, Thus < £,N > is
biadditive by symmetry. It remains to show that N(£) = 1 < £,£ >.
Now

1 1 -

5 <£,£>=-—§ <L, L9
= .lé(-N(L x L&) 4 N(L) + N(£L®') + N(Ocx D))
= J(N(£) + N(£®™)

Therefore the remaining statement is equivalent to

Claim 3. N(L)= N(L£®"1),
As wexp = THwe @ Thwp is a trivial correspondence we need to
prove N(£L®™1) = N(wexp ® £) (This would follow from Serre duality

for the surface C x D.) Now we have exact sequence

0— £&1 —’OCXD—"®OIR.- — 0 and

)

0 = wexp = wexp(L) — @WR.- -0
where the last step is the adjunction formulta. Therefore
x(Ocxp) = x(£27") = 3 x(Or,)
and ;
x(wexp ® L) — x(wexp) = ZX(WR.-)
which equal — 37 x(Og;) by duality on the c1:rves Ri. Thus
+x(Ocxp) — x(£®71) = x(wex D) — x(wexp @ L).

Hence
—N(Ocxp) + N(LE ) = —N(wexp) + Nwexp ® L)

xc(Ocxp)xp(Ocxp) = xo(L¥  )xp(£L57") =
xc(wexp)xp(wexp) — xc(wexp ® L)xpWexn ® £)
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by duality again on € and D. Finally this gives
N(L®1) = N(wexp ® £).

O
Corollary 10.8.4. | <L, M > | <2,/N(L)N(M).
Proof. The standard inequality for a semi-positive quadratic form.

1

We will apply this inequality when £ = Oc¢xp(-T(f)) and M =
Ocxp(—T(g)) where f,g: C — D are distinct morphisms. By definition
—deg M® () is the number < f,g > of points c such that f(c) =
g(c) counted with the right multiplicity. In fact —deg M®|py =
dimyI'(C x D, Ocxp/Lr(n) + Lr(y)- In this case the inequality is a
generalization of A. Weil’s Riemann hypothesis for curves.

Theorem 10.8.5.
|deg f + degg— < fr9 > |

<2+/[genus(D)+genus(C)(deg f—1)][genus(D)+genus(C)(deg g—1)]

Proof. We need to show

(1) <L, M >=deg f+ deg g— < f,g > and
(2) N(L) = — genus(D)— genus (C)(deg f — 1) and N(M) = —
genus(D)— genus(C)(deg g — 1).
Now degcOcxp(I'(f)) =1 and degpOcxp(T(f)) = deg f. Thus (1)
follows from the previous Claim 2. For (2) as the two statements are
the same type we need to show

N{(Ocxp(=T(f))) = —genus(D) — genus(C)(deg f — 1).
We have the exact sequence

0 = Ocxp(-T(f)) = Ocxp — Or(yy — 0.
Thus

X(OCx D(_F(f)) = X(OCx D) - X(OC)-
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Now
N(Oexp(-T(f)) = (xc(Oc) + 1)(xc(Op) + deg f)
~ x(Ocxp) — x(Oc)
= (xe(0e)xp(Ob) — x(Ocx D))
+ xp(0b) + xc(Oc(deg f + deg f — x(Oc¢)
= [xp(Op) — x(Oc)] — genus(C) deg f
= —genus(D) + genus(C) — genus(C) deg f
= —[genus(D) + genus(C){(deg f — 1)].

10.9 The Riemann-Roch Theorem for surfaces.

Let § be a smooth irreducible projective surface (dim § = 2). Let D and
E be distinet closed curves on §. Asin 10.3 we can define intersection
number I{(C,D : p) at any point p of C N D as dimy Og,/(Zcy +
Ipyp) Let Z(C; D) = 37 ccnp I(CyD : p) be the total number of
intersections. We want to define I{(C, D) using cohomology.

We have an exact sequence
0= O0s(—C —D) - 0s(~-C)B Os(—D) - Og = Ocnp — 0.
As Cn D is only a finite number of points,
T(S, Ocnp) = €@ Osp/Tce+Inp)
fecnD

and Ocnp has no higher cohomology groups. Thus x(Ocnp) = I(C, D)
but by the exact sequence

x(Ocnp) = x(0s) - x(Os(~C)) —~ x(Os(—D)) + x(Os(~C — D)).

This motivates the following definition.

Let £ and M be two invertible sheaves. The fniersection number
[£, M] is by definition

X(0s) = x(L371) = x(M®™1) 4 x (L2 x M®™).

Thus [Og(C), Os(D)] = I(C, D) in the previous situation,

‘We have

Lemma 10.9.1. Let £ be an invertible sheaf on §. There exist disjoint
amooth curves Ci,...,C. on § and disjoint smooth curves Dy,...,Dy
on § such that no D; egquals any C; such that £ ~ Og(XC; — LDy).
{Actually one can choose ¢ and d equal fo one.)

Proof. Thisis a consequence of Bertini Theorem. Let A be a very ample
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invertible sheaf. Choose d big enough so that £ ® A®? is generated by
its sections. Thus £ ® N®¥+! and N®¥+! are very ample. Thus by
Bertini Theorem for general sections of £ ® N®%+! and A®4+! their
zeros C and D are smooth. Hence £ &~ O,(C — D) and C = [[C; and
D =[] D; as above. Q.E.D.

We may use this lemma to compute [£,M] in

Lemma 10.9.2. a) €, M] = Sdea(M|,) — Sdeg(Mi,)
b) [£, M] is additive in M and hence £ by symmetry.

Proof. We have exact sequences
0 — £ —+ 0s(C) = ©;05(C)|p, —+ 0 and

0 — L — Os(D) - P Os(D)lg; = 0

Thus
x(£L87h) = x(0s(D)) - Lx(0s(D)lc:)
and
X(£27H @ MO = x(METH(D)) - Ex(M®H(D)c,)-
Hence
[€, M] = x(Os) = x(£57") = x(M® ") + x(£®7 @ M)
= x(0s) ~ x(Os(~D)®7* — x(M®™") + x(M(-D)®™")
+ ZX(O(DNC; - EX(M@_I(D))lCi)
= [0s(=D), M] + Ydeg(M|c;)-
Now we have other exact sequences
0 — Og — Og(D) = Og(D)|p — 0 and
0= M® 5 M®H(DY) 5 MO (D)|p—0
[Os(=D), M] = x(Os) — x(M®™)
+x (M8 = Ex(Os(Di)|p,) + x(M T (Di)|p.) = = %; deg (M|p;).
Q.E.D.

Now we are ready for

-~

Theorem 10.9.3 (Riemann-Roch). Let £ be an invertible sheaf on 3.
Then

1 _
x(£) = §[ﬁ,ﬁ® Oswg ™ + x(Os).

Proof. Write £ = Og(3 Ci — >_D;) as before.
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We have two exact sequences

0= L - 0s(3C) — @OS(EC.-NDJ. —+0

and

0 — 05 = Os(£C:) = P Os(TCi)le, — 0-
k

Thus
X(£) = x(0s) + Lx(Os(LCi)l o ~ Lx(Os(2C4)| ;)
= x(0s) + 24x(Oc¢,) — 22;x(Op;)
+ 2.deg(0s) + 2°Cilc,) — deg(Os(22Ci)|p;)
= x(0s) + [0s(32Ci), £] + 2x(O¢;) — 2;x(0Op;)-

Hence we need to prove that

A: Zx(@cﬁ) - ZX(OD.-) =

-1 1 1
5 lws, £] = 5[0s(32C), £] - 5[0s(32D:), £)-
By the adjunction formula we have
we; = ws(3°Ci)le; and wp, = ws(3D;)|D;.
Now if D is a smooth complete curve, x(Og) = _Tl[degﬂc]. Therefore
the left side of A is
==}, deg(ws(3Ci)le;] + 5 L deg(ws( X Dilp;)
=g[~lws, L] - [O(32C:), OCCC:)) + (O D:), O(X D)l
This equals the right side of A by the bilinearity of intersection.
Q.E.D.

Exercise 10.9.4 For a correspondence £ on C' x D, shows that N(L) =
_TI[E, L‘o] + degc ,C degD ,C.
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A.1 Loecalization

Let A be a (commutative) ring with identity 1. A multiplicative subset
S is a subset of A such that

(¢) 1lisin § and

(b) if sy and sz are in §, then product s, - szisin 5.

If § is a multiplicative subset of A, we can define a new ring Ag, the
localization of A with respect to §. An element of Ag is an equivalence
class of expressions a/s where a is in A and s is in §. The equivalence
relation is

afs ~ b/t iff u € § such that u(fa — sb)=01in A.

One first checks that this is an equivalence relation. The addition in

Ag is given by
a/s 4+ bft ~ ta + sb/st

and the multiplication in Ag is given by

a/s-bft ~ ab/st.
One next checks that these operations are wel} defined on equivalence

classes and Ag is a commutative ring.
We have a natural homomorphism 3 : A — Ag which sends a to a/1.
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Ezercise A.1.1. Prove that Ker ¢y = {a € A|3s € § such that sa = 0}.

Ezercise A.1.2. Let vv: A — B be a homomorphism of rings.
Then we have a commutative diagram

Yv:A——~B

e

As

iff 1(8) C contained units of B in which case 3 is uniquely determined
by .

Ezercise A.1.8. Provethat asan A-algebra Ag is canonically isomorphic
to A[X, ses]/(sXs — 1,e5) where X, are indeterminate.

Localization is a generalization of the usual construction of the quo-
tient field @ of an integral domain Z. In this case @ = Zz.f0). We will
give the most frequent examples of multiplicative sets.

Let f be an element of A. The set (f) = {1, f, f2,...} is the minimal
multiplicative set containing f. The ring

A(f) = {%mcdu]o % ~ fi-’ < f'i+na

= fi*+"b for some n > 0}

Let P be a prime ideal of A. Then § = A — P is a multiplicative set.
In this case

Ag is denoted by Ap.

Ezercise A.1.4. Show that Ap is a local ring with maximal ideal
Y(P)Ap.

Ezercise A.1.5. A¢y) is the zero ring iff f is nilpotent.

Given A and § we may Jocalize an A-module M and obtain an Ag-
module Ms. An element of Mg is an equivalence class of expressions
m/s where m is in M and s isin §.

The equivalence relation is

my /sy ~ mafsy Mt t(samy —syme) =0in M

for some element ¢ of §. The addition in Mg is mi/sy + mafsz =
(s2my + syma/ sy s2) and the scalar multiplication is a/s- m/t = am/st.
One may check that these definitions give an Ag-module Mg, We have
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a natural A-homomorphism ¢ : M — Mg sending m to m/1. Thus we
have a natura} As-homomorphism o : M@ 445 — Mg.

Egzercise A.1.6. o is an isomorphism.

Ezxercise A, 1.7. Let 0 = M, — M; — M; — 0 be an exact sequence of
A-modules. Then we have an exact sequence

0 — My,g = My 5 — M g — 0 of Ag-modules.

A.2 Direct limits

Let (U,>) be a partially ordered set. Then (U,>) is directed if for all
z; and uz In U there s w3 in U such that u; > u; and u; > 3. We will
assume that (U, >) is directed.

A direct system (F,)ucv is a set F, for each » in U together with a
mapping rui : Fy, — Fy, if 4; > vz such that

(a) r¥ = identity of F, for all z and

w

(b) ril=r¥toryl ifuy > uz > us.

The direct Jimit Jimit F, of a direct system (F,)ucv is the set [[ 7.
ucl
modulo the relation that fy in F,, and fz in F,, are equivalent if there

exists a u3 such that », > 3 and uz 2> w3 such that r31(f1) = r}2(f3).
One checks easily that this is an equivalence relation. For each z In U/
we have a canonical mapping s, : F, — limit F, sending f in F, to the

class represented by f. This mapping has the compatibility s., = 7§15,
if i3 2 Uuz.

If (Fu)vev and (Gu)yev are two direct systems a morphism o :
(F,) — (G,) of direct systems is a mapping a, : F, — G, for all »
in U such that 73! oy, = @y, ory! when u; > uy. In this case we have
an induced mapping

limitor: limit F, — limit G,
which is determined by the equation s, r o, = limitor- s, for all v in U.
If C is a category, we may define a direct system (F,)uev in C. Here
F, are objects in C and the 73! are morphisms in C. For instance we
may have a direct system of abelian groups, rings, modules, etc. Usually

we can define a direct limit of (F}, )yev in C. For instance if C is {abelian
groups}, then [imit F, is the set-theoretic direct limit with the addition:

if fi isin F,, and f; is in F,, then
fr+ fa ~rit(f1) + ri2(f2) where vy > u3 and uz 2 u.
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One simply checks that this addition is well-defined and gives limit F,

the structure of abelian groups such that the s,’s are homomorphisms,
Also one may define a morphism of direct systems in C by requiring that
the o, are morphisms in C. If the direct Jimits exist in C as above then

limit o : limit F, — mit G,
—_— —_3
is a morphism in C. One important property of direct Iimits is exactness.

An exact sequence of direct systems of abelian groups is the homomor-
phism of direct systems

0 = (My)uev = (Nu)uet = (Py)ucv — 0
such that for all = the sequence 0 — M, — N, — P, — 0 is exact.

Ezercise A.2.1. In this situation prove
0 — hmit M, — limit N, — limit P, — 0
— btk Joaau
is exact.

In this book I use the connection between localization and direct limits
systematically. Let f be an element of a ring A and M be an A-module,
Let (U,>) be N with reverse ordering. Let fl—,, + M be F, where & is

fn
a bookkeeping symbol. Then we have a direct system i : % M -
J,]T,M where ng > n; where r;;;(fil m) = f}_z e,

Ezercise A.2.1. Show that Limit-52M = M p.
ol @ 7 N

A.3 Eigenvectors

Let A be a set of linear operators on a k-vector space V., A vector ¢
in V is an eigenvector for A if a(v) = A, - v for some k-valued function
Aon A. Here ) is called the eigenvalue of v. For given A the subset
V» consisting of al} eigenvectors v with eigenvalue ) is a subspace of V,
called the A-eigensubspace. We have a natural injection

Pnov
A

as non-zero eigenvectors with distinct eigenvalues are linearly indepen-
dent by usual induction on the number of vectors. If this injection is an
isomorphism we will say that ¥ is spanned by eigenvectors.

A subspace W of V is A-tnvariant if a(W) <1V for al] a in A
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Lemma A.3.1. If W is an A-inveriani subspace of V and V is
spanned by eigenvectors then W is spanned by eigenvectors.

Proof. Let wbe an element. Then w = 3 v where v, is a A-eigenvector
)

in V and the sum is finite. It will suffice to show that v, is in W for all

A Now a(w) is in W as X, - w — a(w) = (A, — Aa)v, for any X' say
one of the A. Thus by induction on the number of ),
(AL — Xa)va is in W for all ) and a.

As long as there are two distinct X this implies that vy is in W. If

there is only one ) then there is no problem. a
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Glossary of notation

A(a), the localization of A at a 6

[Ae:efA] = {b€ A:efbe Aa)} T4

A, the affine line 3 i

A" the affine n-space 10

A" — {0}, the punctured affine space 3

ofo) = o V(o) 39

as(0:) = (a())s 39

oz (F) 43

Aly, the restriction of 4 to an open subset U 55
A(V) = ,ev (integral closure in L of Oy,,) 82
Ax-Hom(f*G,F) 66

Ay-Hom(G, f..F) 66

C> 49

C*(F) 114

GA(F) @ F(G) 118

x(F), Euler characteristic of F 117

x(Opn(r)) 117

(Cok T(X, f4))" 67

(Cok )| 61

Cot.(X) = m,/mZ, the Zariski cotangent space of X at z 70
C(X), the cone in A"t+! gver a closed set X in P* 31
CHX,F)114
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D(a)(Ts)vev) = (ou(T0))vev 40

D*(F) 98

D(f) 1

D(f)T 40

DFYV) = [l,ev Fu 43

deg £ =deg(D) for £ = O¢(D) 93

deg(div(f)) 93

deg f Edimk(p)k(c') 93

deg (f1E) 93

det F = Ak F X585

df|z = the equivalence class of f — f(z) in mz/m2 70

dlz 1 Ox ¢ —Cot (X) 70

d:0x —§x 75

dim A"™ 20

dim f~3(x) 80

dim f~1(f(=)) 81

dmeHi (X, Fy) 121

dimI'(C, F) 91

dimI(C, F|p) 92

dimg(F|;) 61

dim,(X) =max{dim C: C a component of X passing through z} 71

div(f) 93

divisor f7'E on C 93

divisor f~ld= 3 e, c93
cef-1d

Div(F) = > dimp(Fe,) - ¢; 91

Div(F|p) 92

Div(X) 63

Bicr Fi 53

Bz Sym"(Cota(X)) 71

De(0)={z € X : rank ofz) < r} 12

dx(f*a) = f*(dya) T6

E = m4a({0}), the exceptional divisor at the origin 37

QY] @) K[Y] — Q[X] 76

F* =pre-i(F) 44

F3, the smallest subsheaf of D(F) containing F* 44
F', the extension of F by zero 59

(f, f*)-Hom(G, F) 66

771G 66
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f*Geg

(7+Oc|u)’, the dual of fiOc|v 94

f i Qp = Q¢ 95

f*ﬂp(div QC/D) 95

U¥ 57, 100

F(D)=-0¢c(D) 92

Flp=F[{F(-D) 92

Fy 57

f-homomorphism 66

(fs f*)-homomorphism 66

(f, £*)- Hom(G, F) 66

f-Hom(G, F) 66

F(m) = F @0, Ox(m) 60

F,:D— D95

FQf*118

Fiorsion EKCI‘(}- —)R&t(}-)) a1

F|u, the restriction of 7 on an open subset U of X 53
Foy stalk of F at = 39

Flz = Frfm,F,, a k-vector-space at a point z 60

G, the additive algebraic group 31

G(A) = @, miA/mITTAT9

G/F =(pre( G/ F)! 49

GI(n), the general linear algebraic group 31
@Gy, the multiplicative algebraic group 31
Graph(f) 28

G|x = G/IxG, the Oy-module annihilated by Zx 59
G:(Ox,2) = Pso(mp/my+t) 72

I(C, L) 93

T(D(f), M) 56

P(‘D(f)! OX) 96

I(U,-) 118

I'(X,D*F) 98

(X, M) 56

I'(X,0x) 56

Hi(A™ - {0},0an) 113

Hi(P", Opn(d)) 114

HY(C,F) 97

HY(X,F), the i-cohomology group of F 98
H{(X,F(n)) 116



152 Glossary of notation

Hi(X,F® (&) 118

Hom4(N, M) 55

Hom(F,Qc¢), the global section of Home(F,Q¢) 107
Homx (G, F) 66

Homy(g, f*f) 66

i:F — Rat(F), a natural Og-linear mapping 91
I{C, D: p), the intersection multiplicity of C and D at p 127
IFI(X),the group of all inverible fractional ideals of Ratx 63
I (@), the determinants of all (r+1)x (r+41) submatrices of a 12
i(0) = (7a)uew 40
Zx, the ideal sheaf of regular functions on ¥ vanishing on X 59
Ix|a =Ix/T%, the coherent Oy-module

annihilated by Zx 60

K s G(V)/F(V) = GU)/F(U) 49
EX)= | KUl
#x#UC Xopen
the field of rational functions on X 62
(k[X](s)) 56

A" M, the exterior power 55
£y, a secant 73

limit ; = (pre-limit F;)¥ 51
bubduaiuad § brianarsat 4

Matrix (f*’l,bi_,') 67

M ® 4(x) A, the associated sheaf 55
M = MO 105

M= W*(leAn+1_{n}xY)de5me 0 117

M = Mc(x)—q0) 61

(M) 56

(M(f) degree 0)-61

M|, the restriction of A-module M to an open subset U 55
.ﬂ/.f:(U) = (M(TFHIU)degree 0 62

(M), 56

m, /m2 70

N @4 M55
N(L)= —x(8) + xp(8)xc(8) 133

Oc(—div(f)) = f+ Oc 93
Oc(f~'E) = f*(Op(E)) 93
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Op =0c¢c|p 92

Opn (m) 60

Op~ = Opn(0) 60

Orn(1) 65

Ox, the structure sheaf 54

Ox(m) = Opn(m)lx = Opn(m)/IX 60
Ox(D)=I5'63

Ox(U)1

Oy-Alg-Hom( A4, ¢.0z) 82

Pic(A™) 64
Pico(E) 129
Pic)(E) 128
Pic(P") 65
Pic(X), the Picard group of X 62
pre-aF) 43
pre-(G/F) 49
pre-1(F) 44
pre-Jimit (7)(V) = imit((V)) 51
Princ.(F) =Rat(F)/F. 96
Prin(F) = € Prin .F 96 !
eeC
Prin(F), thi sheaf of principal parts 96
P!, the projective line 3
P", the projective n-sapce 10
P, a projective space 83
P(X), the principal fractional idea) in IFI(X) 63

Rad(A) 5

rank{a(z)) 12

rankF =dimgx)Rat(F) 90

Rat(F)/F., the principal parts at ¢ of rational sections of F 96
Rat(F), the constant sheaf for a coherent F 90

Ratx 63

Res;(w), the residue of a rational differential w at ¢ 106

resg 38

resg in pre—li_rgi{; Fi= ]}ﬂf; (resg in F;) for each open U C V 51

re?g((fv)vei’) = (Tu)uev 40

R f.F, the higher direct image 102
Rf(F® f*G) 118

Rt f,(Fy), the skyscraper sheaf 120
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Rimy+F(n) 117

on = 0|y, 41

ol 39

SpecA = k-Alg-Hom(A, k) 4
Spec(A¢p)) 5

SpCC(A(f) degree 0) 61

Spec(A/I) 9

Supp(F) 53

Sym(Cot;X), a polynomial ring 71
Sym™ M 55

(TC:X)rea ESpec(Gz(Ox,z)/\/ﬁ), the tangent cone in T, X 73
Tor' (L, Oy) 120
Tr: k(C) — k(D) 94
Tr' 111
TH(f)(d) 9
Tr: fuOc — Opr an O¢-linear mapping 94
Ty f*ﬂc — .QD 111
T: X =Spec{ &5 Sym"(Cot. X)) 6.3.71
n>0

P Quy) G 119

wp = wx(D)|p, where D is a smooth divisor on X 79
wyx =det Qx 79

Q[A") 76

Qec/p = Qc/ f+8p, a torsional Oc¢-module 95

Qe Roe £271 105

Qx, the sheaf of differentials on X 60

QXlz 77

Q[X) 76

zeroes(Z) =Support(Ox/T) 64

< fog > 137
<L,N > 135
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A-invariant subspace 142
abelian sheaf 46

abelian variety 35

additive functor 98

adjoint 66, 134

adjunction formula 79

affine morphism 18

affine nullstellensatz 5

affine Jine 3

affine smooth curve 86
affine u-space 10

affine variety 3

algebraic group 30

ample invertible sheaves 68
arithmetic genus of C 127
ascending chain conditjon 62
associated sheaf F} 44
associated sheaf M ® 4x) A 55
associated sheaf Sym”™ M 55

basis for a topology 5, 7, 32
Bertini's theorem 83
Bezout’s theorem 126
biadditive 135
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birational morphism 34
blown up affine space 36

canonical quotient short exact sequences of flabby sheaves 47
categorical product 25

Cauchy residue 110

Cech cohomology 115

Chain condition 15

Characteristic of & is prime 94

Chow covering 89, 130

Chow's Jemma 34

closed mapping 132

coherent module 58

coherent Qy-module Zx|a = Zx/T% annihilated by Tx 59
cohomology class 100

cohomology group H'(C,F) 97

cohomology group Hi(X,F) 98

complete variety 33

complex D*(F) 98

complex I'(X, D*F) 98

component of a topological space 17

cone 31

connected topological space 16

constant sheaf Rat(F) for a coherent F 90

coordinate filtration 126

correspondence 132

Cotz(X) = my/m?, the Zariski cotangent space of X at z 70
Cousin problem 96

Cramer’s rule 6

curve = irreductible separated one-dimensional variety 85
cusp 75

C(X) cone over a closed set X 31

decent presheaf 41

degree of a divisor 90

degree of an invertible sheaf on a smooth curve 93
degree of an invertible sheaf on a singular curve 93
dense 18

descending chain condition 16

determinants of all (r + 1) X (v + 1) submatrices of « 12
determinantal varieties 11
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diagonal embedding 59
differential, df |, 70
differential form 72
differentials 49
dimension of a topological space 20
direct Jimit 50

of sheaves 50
direct sum 54
direct system 141

of sheaves 50
discontinuous sections 40
discrete valuatipn ring (DVR) 85
divisors 63

effective divisor 63

eigenvalues 142

eigenvectors 142

elliptic curve 35, 128

Euler characteristic x(F) of F 117

Euler exact sequence 48

evaluation of a function at a point 8

exact sequence of abelian sheaves 47

exceptional divisor E = m21({0}) at the origin 37
exterior power A® M 55

f-homomorphism 66

(f» *)-homomorphism 66

field (X)) of rational functions on irreductible X 62
filtration by coherent sheaves 91

finite morphism 18

finite surjective morphism 20

finitely generated torsional O¢ c;-modules 91
first order variation of a function at z 70
flabby resolution 102

flabby sheaves 46

flat module 118

flat sheaf gver ¥ 118

fractional ideals 63

free abelian group 63

free A-modules 55

function field of dimension one 88
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genus of a curve 104

global invariant Cok(a) of the sheaf F 97
global section I" 94

global statements 93

G-invariant 31

Godement’s canonical flabby resolutions 46
graded module 61

graded ring 61

graph(f) 88

Grauert 121

Grothendieck 118

higher direct image R f,F 102

Hilbert'’s nullstellensatz 5

Hilbert’s basis theorem 15

Hirzebruch 117
Hirzebruch-Riemann~Roch theorem 117
homogeneous 11

homogeneous coordinate 28
homogeneous equation 126
homomorphism of abelian (pre-)sheaves 46
homotopically trivial 115

hyperelliptic curves 109

hyperplane 83
hypersurface 21

ideal sheaf 59
implicit differentiation 76
increasing sequence of ideals in the noetherian ring 86
induced structure of a space with functions 9
integra] closure
commutes with localization 83
in quotient field 89
integral domain 16
intersection multiplicity I{C, D: p) of C and D at p 127
intersection number 127
invertible A-module 55
invertible ideals of Ox 64
invertible fractional ideals IFI(X) of Ratx 63
invertible sheaves 62

irreducible divisors 63
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irreducible topological space 16
isolated point = a component 20
isomorphism of spaces with functions 2
i-th cohomology group Hi(X, F) 98

Kinneth formula 114

Lagrange identity 111

left exact 67

Leray 38

Leray spectral sequence i134

limiting secant 73

linear change of variables 13

local coordinates 28

localization 6

locally closed 29

locally factorial 64

locally free A-module 55

locally free coherent sheaf on a smooth curve 92
locally free O p-module of rank deg f 92
locally regular 1

locally trivial bundle of lines 37

locally vanishing principle 100

locus 32

long division 14

long exact sequence of homology groups 99
lower-semicontinuous 12

Liiroth 110

mapping cone 119
matrix of sections 55
matrix (F*yy;) 67
minimal prime ideal 17
Morphism
of presheaves 38
of spaces with functions 2
of varieties 3
multiplicative subset 7
Mumford's rigidity 132

Nakayama’s Jemma 6
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nilpotent 4

node 75

Noether 5

noetherian induction 52

noetherian local ring 74

noetherian topological space 15
Noether’s normalization lemma 83
non-degenerate symmetric k(D )-bilinear form on &(C) 94
normal variety 82

normalization of a variety X in k(X') 82
nullstellensatz 5

obstruction to solving the Cousin problem 104
open affine subvarieties 11

open subspace of a space with functions 2
ordinary sheaf 97

parabola 75

partially ordered set 39

patching condition 41

Picard group of X, Pic(X) 62
plane curves 127

Preparation lemma 13

presentation of M 58

presheaf 38

principal parts at ¢ of rational sections of F 96
principal fractional ideals P(X) of Ratx 63
principal ideal theorem 22
principal part of w at ¢ 110
products 25

projective embedding 125
projective line P* 3

projective n-space P® 11

projective nullstellensatz 32
projective space P** 83

projective subvariety 31

Proof of Lemma 1.4,1 14

Proof of Lemma 1.5.6 15
punctured affine space A™ — {0} 10
pure dimension 79

purely inseparable morphism 94



Index

quadratic function on the group of correspondence 135
quasi-affine variety 10

quasi-coherent 55

quasi-compact 7

quasi-projective variety 11

quotient space with functions 10

radical Rad(A) of A 5

radical vector field 79

ramified at ¢ 94

ramified morphism 94

ramification index 94

rank 55

rank, finjte 55

rational differential 110

rational mapping 89

reduction to the diagonal 33

regular function 1

regular rational mapping 130

residue Res.(w) of a rational differential w at c 110
restriction A|y of A to U 55

restriction M|y of A-module M to U 55
Riemann-Roch theorem 98
Riemann-Hurwitz theorem 109

right exact 67

secant £, 73

section 39

Segre embedding theorem 27
semi-positive quadratic forms 137
separable morphism 94

separated varieties 29

Serre 101

Serre duality 107

Serre vanishing theorem 125
sheaf 41

sheaf A of rings 54

sheaf Prin(F) of principal parts 96
sheaf of .A-modules 54

sheaf of C*° functions 49

sheaf of differentials 60
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sheaf of fractional ideals 7 of Rat x 63
sheaf Ox of regular functions on X 54
sheafification 44

sheafification ¥ 44

short exact sequence of abelian sheaves 47
singular curve 127

singular point 84

skyscraper sheaf Rif.(F,) 120
smooth at a point 79

smooth complete curve 92

smooth completion of G 131

smooth curve 86

smooth divisor 79

smooth projective curve 88

smooth variety 71

snake homomorphism 120

space with functions 1

stalk F, 39

stalk exactness 47

structure sheaf fx 43

sub-{pre-)sheaf 42

subvariety 9

support of F 53

syzygies 65

tame yamification point of f 95
tangent cone, (TC:X)req 73
tangent space 71

tangent vector 131

torsional coherent sheaf 91
torsional element 91

torsional sheaf 91

torsion-free sheaf 91
translation by ¢ 69

twisted sheaf F(m) 60

unique factorization domain (UFD) 21
unramified morphism 94

upper-semicontinuous 61

variational cohomology of a constant family of sheaves 103
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vector fleld 79
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Wei] divisors 63
Weil-Riemann—Roch theorem 108
‘Weil's Riemann hypothesis 137

Zariski cotangent space 70
zero divisor of ¢ 134
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